/*** * Copyright (C) Microsoft. All rights reserved. * Licensed under the MIT license. See LICENSE.txt file in the project root for full license information. * * =+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+ * * Parallel Patterns Library - PPLx Tasks * * For the latest on this and related APIs, please see: https://github.com/Microsoft/cpprestsdk * * =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- ****/ #pragma once #ifndef PPLXTASKS_H #define PPLXTASKS_H #include "cpprest/details/cpprest_compat.h" #if (defined(_MSC_VER) && (_MSC_VER >= 1800)) && !CPPREST_FORCE_PPLX #include namespace pplx = Concurrency; namespace Concurrency { /// /// Sets the ambient scheduler to be used by the PPL constructs. /// _ASYNCRTIMP void __cdecl set_cpprestsdk_ambient_scheduler(const std::shared_ptr& _Scheduler); /// /// Gets the ambient scheduler to be used by the PPL constructs /// _ASYNCRTIMP const std::shared_ptr& __cdecl get_cpprestsdk_ambient_scheduler(); } // namespace Concurrency #if (_MSC_VER >= 1900) #include namespace Concurrency { namespace extensibility { typedef ::std::condition_variable condition_variable_t; typedef ::std::mutex critical_section_t; typedef ::std::unique_lock<::std::mutex> scoped_critical_section_t; typedef ::Concurrency::event event_t; typedef ::Concurrency::reader_writer_lock reader_writer_lock_t; typedef ::Concurrency::reader_writer_lock::scoped_lock scoped_rw_lock_t; typedef ::Concurrency::reader_writer_lock::scoped_lock_read scoped_read_lock_t; typedef ::Concurrency::details::_ReentrantBlockingLock recursive_lock_t; typedef recursive_lock_t::_Scoped_lock scoped_recursive_lock_t; } // namespace extensibility } // namespace Concurrency #endif // _MSC_VER >= 1900 #else #include "pplx/pplx.h" #if defined(__ANDROID__) #include void cpprest_init(JavaVM*); #endif // Cannot build using a compiler that is older than dev10 SP1 #if defined(_MSC_VER) #if _MSC_FULL_VER < 160040219 /*IFSTRIP=IGN*/ #error ERROR: Visual Studio 2010 SP1 or later is required to build ppltasks #endif /*IFSTRIP=IGN*/ #endif /* defined(_MSC_VER) */ #include #include #include #include #include #include #if defined(_MSC_VER) #include #if defined(__cplusplus_winrt) #include #include #include #include #ifndef _UITHREADCTXT_SUPPORT #ifdef WINAPI_FAMILY /*IFSTRIP=IGN*/ // It is safe to include winapifamily as WINAPI_FAMILY was defined by the user #include #if WINAPI_FAMILY == WINAPI_FAMILY_APP // UI thread context support is not required for desktop and Windows Store apps #define _UITHREADCTXT_SUPPORT 0 #elif WINAPI_FAMILY == WINAPI_FAMILY_DESKTOP_APP // UI thread context support is not required for desktop and Windows Store apps #define _UITHREADCTXT_SUPPORT 0 #else /* WINAPI_FAMILY == WINAPI_FAMILY_DESKTOP_APP */ #define _UITHREADCTXT_SUPPORT 1 #endif /* WINAPI_FAMILY == WINAPI_FAMILY_DESKTOP_APP */ #else /* WINAPI_FAMILY */ // Not supported without a WINAPI_FAMILY setting. #define _UITHREADCTXT_SUPPORT 0 #endif /* WINAPI_FAMILY */ #endif /* _UITHREADCTXT_SUPPORT */ #if _UITHREADCTXT_SUPPORT #include #endif /* _UITHREADCTXT_SUPPORT */ #pragma detect_mismatch("PPLXTASKS_WITH_WINRT", "1") #else /* defined(__cplusplus_winrt) */ #pragma detect_mismatch("PPLXTASKS_WITH_WINRT", "0") #endif /* defined(__cplusplus_winrt) */ #endif /* defined(_MSC_VER) */ #ifdef _DEBUG #define _DBG_ONLY(X) X #else #define _DBG_ONLY(X) #endif // #ifdef _DEBUG // std::copy_exception changed to std::make_exception_ptr from VS 2010 to VS 11. #ifdef _MSC_VER #if _MSC_VER < 1700 /*IFSTRIP=IGN*/ namespace std { template exception_ptr make_exception_ptr(_E _Except) { return copy_exception(_Except); } } // namespace std #endif /* _MSC_VER < 1700 */ #ifndef PPLX_TASK_ASYNC_LOGGING #if _MSC_VER >= 1800 && defined(__cplusplus_winrt) #define PPLX_TASK_ASYNC_LOGGING 1 // Only enable async logging under dev12 winrt #else #define PPLX_TASK_ASYNC_LOGGING 0 #endif #endif /* !PPLX_TASK_ASYNC_LOGGING */ #endif /* _MSC_VER */ #pragma pack(push, _CRT_PACKING) #if defined(_MSC_VER) #pragma warning(push) #pragma warning(disable : 28197) #pragma warning(disable : 4100) // Unreferenced formal parameter - needed for document generation #pragma warning(disable : 4127) // constant express in if condition - we use it for meta programming #endif /* defined(_MSC_VER) */ // All CRT public header files are required to be protected from the macro new #pragma push_macro("new") #undef new // stuff ported from Dev11 CRT // NOTE: this doesn't actually match std::declval. it behaves differently for void! // so don't blindly change it to std::declval. namespace stdx { template _T&& declval(); } /// /// The pplx namespace provides classes and functions that give you access to the Concurrency Runtime, /// a concurrent programming framework for C++. For more information, see . /// /**/ namespace pplx { /// /// A type that represents the terminal state of a task. Valid values are completed and canceled. /// /// /**/ typedef task_group_status task_status; template class task; template<> class task; // In debug builds, default to 10 frames, unless this is overridden prior to #includ'ing ppltasks.h. In retail builds, // default to only one frame. #ifndef PPLX_TASK_SAVE_FRAME_COUNT #ifdef _DEBUG #define PPLX_TASK_SAVE_FRAME_COUNT 10 #else #define PPLX_TASK_SAVE_FRAME_COUNT 1 #endif #endif /// /// Helper macro to determine how many stack frames need to be saved. When any number less or equal to 1 is specified, /// only one frame is captured and no stackwalk will be involved. Otherwise, the number of callstack frames will be /// captured. /// /// /// This needs to be defined as a macro rather than a function so that if we're only gathering one frame, /// _ReturnAddress() will evaluate to client code, rather than a helper function inside of _TaskCreationCallstack, /// itself. /// #if PPLX_TASK_SAVE_FRAME_COUNT > 1 #if defined(__cplusplus_winrt) && !defined(_DEBUG) #pragma message( \ "WARNING: Redefining PPLX_TASK_SAVE_FRAME_COUNT under Release build for non-desktop applications is not supported; only one frame will be captured!") #define PPLX_CAPTURE_CALLSTACK() ::pplx::details::_TaskCreationCallstack::_CaptureSingleFrameCallstack(_ReturnAddress()) #else #define PPLX_CAPTURE_CALLSTACK() \ ::pplx::details::_TaskCreationCallstack::_CaptureMultiFramesCallstack(PPLX_TASK_SAVE_FRAME_COUNT) #endif #else #define PPLX_CAPTURE_CALLSTACK() ::pplx::details::_TaskCreationCallstack::_CaptureSingleFrameCallstack(_ReturnAddress()) #endif /// /// Returns an indication of whether the task that is currently executing has received a request to cancel its /// execution. Cancellation is requested on a task if the task was created with a cancellation token, and /// the token source associated with that token is canceled. /// /// /// true if the currently executing task has received a request for cancellation, false otherwise. /// /// /// If you call this method in the body of a task and it returns true, you must respond with a call to /// cancel_current_task to acknowledge the cancellation request, /// after performing any cleanup you need. This will abort the execution of the task and cause it to enter into /// the canceled state. If you do not respond and continue execution, or return instead of calling /// cancel_current_task, the task will enter the completed state when it is done. /// state. /// A task is not cancelable if it was created without a cancellation token. /// /// /// /// /// /**/ inline bool _pplx_cdecl is_task_cancellation_requested() { return ::pplx::details::_TaskCollection_t::_Is_cancellation_requested(); } /// /// Cancels the currently executing task. This function can be called from within the body of a task to abort the /// task's execution and cause it to enter the canceled state. While it may be used in response to /// the is_task_cancellation_requested function, you may /// also use it by itself, to initiate cancellation of the task that is currently executing. /// It is not a supported scenario to call this function if you are not within the body of a task. /// Doing so will result in undefined behavior such as a crash or a hang in your application. /// /// /**/ inline __declspec(noreturn) void _pplx_cdecl cancel_current_task() { throw task_canceled(); } namespace details { /// /// Callstack container, which is used to capture and preserve callstacks in ppltasks. /// Members of this class is examined by vc debugger, thus there will be no public access methods. /// Please note that names of this class should be kept stable for debugger examining. /// class _TaskCreationCallstack { private: // If _M_SingleFrame != nullptr, there will be only one frame of callstacks, which is stored in _M_SingleFrame; // otherwise, _M_Frame will store all the callstack frames. void* _M_SingleFrame; std::vector _M_frames; public: _TaskCreationCallstack() { _M_SingleFrame = nullptr; } // Store one frame of callstack. This function works for both Debug / Release CRT. static _TaskCreationCallstack _CaptureSingleFrameCallstack(void* _SingleFrame) { _TaskCreationCallstack _csc; _csc._M_SingleFrame = _SingleFrame; return _csc; } // Capture _CaptureFrames number of callstack frames. This function only work properly for Desktop or Debug CRT. __declspec(noinline) static _TaskCreationCallstack _CaptureMultiFramesCallstack(size_t _CaptureFrames) { _TaskCreationCallstack _csc; _csc._M_frames.resize(_CaptureFrames); // skip 2 frames to make sure callstack starts from user code _csc._M_frames.resize(::pplx::details::platform::CaptureCallstack(&_csc._M_frames[0], 2, _CaptureFrames)); return _csc; } }; typedef unsigned char _Unit_type; struct _TypeSelectorNoAsync { }; struct _TypeSelectorAsyncOperationOrTask { }; struct _TypeSelectorAsyncOperation : public _TypeSelectorAsyncOperationOrTask { }; struct _TypeSelectorAsyncTask : public _TypeSelectorAsyncOperationOrTask { }; struct _TypeSelectorAsyncAction { }; struct _TypeSelectorAsyncActionWithProgress { }; struct _TypeSelectorAsyncOperationWithProgress { }; template struct _NormalizeVoidToUnitType { typedef _Ty _Type; }; template<> struct _NormalizeVoidToUnitType { typedef _Unit_type _Type; }; template struct _IsUnwrappedAsyncSelector { static const bool _Value = true; }; template<> struct _IsUnwrappedAsyncSelector<_TypeSelectorNoAsync> { static const bool _Value = false; }; template struct _UnwrapTaskType { typedef _Ty _Type; }; template struct _UnwrapTaskType> { typedef _Ty _Type; }; template _TypeSelectorAsyncTask _AsyncOperationKindSelector(task<_T>); _TypeSelectorNoAsync _AsyncOperationKindSelector(...); #if defined(__cplusplus_winrt) template struct _Unhat { typedef _Type _Value; }; template struct _Unhat<_Type ^> { typedef _Type _Value; }; value struct _NonUserType { public: int _Dummy; }; template struct _ValueTypeOrRefType { typedef _NonUserType _Value; }; template struct _ValueTypeOrRefType<_Type, true> { typedef _Type _Value; }; template _T2 _ProgressTypeSelector(Windows::Foundation::IAsyncOperationWithProgress<_T1, _T2> ^); template _T1 _ProgressTypeSelector(Windows::Foundation::IAsyncActionWithProgress<_T1> ^); template struct _GetProgressType { typedef decltype(_ProgressTypeSelector(stdx::declval<_Type>())) _Value; }; template struct _IsIAsyncInfo { static const bool _Value = __is_base_of(Windows::Foundation::IAsyncInfo, typename _Unhat<_Type>::_Value); }; template _TypeSelectorAsyncOperation _AsyncOperationKindSelector(Windows::Foundation::IAsyncOperation<_T> ^); _TypeSelectorAsyncAction _AsyncOperationKindSelector(Windows::Foundation::IAsyncAction ^); template _TypeSelectorAsyncOperationWithProgress _AsyncOperationKindSelector( Windows::Foundation::IAsyncOperationWithProgress<_T1, _T2> ^); template _TypeSelectorAsyncActionWithProgress _AsyncOperationKindSelector(Windows::Foundation::IAsyncActionWithProgress<_T> ^); template::_Value> struct _TaskTypeTraits { typedef typename _UnwrapTaskType<_Type>::_Type _TaskRetType; typedef decltype(_AsyncOperationKindSelector(stdx::declval<_Type>())) _AsyncKind; typedef typename _NormalizeVoidToUnitType<_TaskRetType>::_Type _NormalizedTaskRetType; static const bool _IsAsyncTask = _IsAsync; static const bool _IsUnwrappedTaskOrAsync = _IsUnwrappedAsyncSelector<_AsyncKind>::_Value; }; template struct _TaskTypeTraits<_Type, true> { typedef decltype(((_Type) nullptr)->GetResults()) _TaskRetType; typedef _TaskRetType _NormalizedTaskRetType; typedef decltype(_AsyncOperationKindSelector((_Type) nullptr)) _AsyncKind; static const bool _IsAsyncTask = true; static const bool _IsUnwrappedTaskOrAsync = _IsUnwrappedAsyncSelector<_AsyncKind>::_Value; }; #else /* defined (__cplusplus_winrt) */ template struct _IsIAsyncInfo { static const bool _Value = false; }; template struct _TaskTypeTraits { typedef typename _UnwrapTaskType<_Type>::_Type _TaskRetType; typedef decltype(_AsyncOperationKindSelector(stdx::declval<_Type>())) _AsyncKind; typedef typename _NormalizeVoidToUnitType<_TaskRetType>::_Type _NormalizedTaskRetType; static const bool _IsAsyncTask = false; static const bool _IsUnwrappedTaskOrAsync = _IsUnwrappedAsyncSelector<_AsyncKind>::_Value; }; #endif /* defined (__cplusplus_winrt) */ template auto _IsCallable(_Function _Func, int) -> decltype(_Func(), std::true_type()) { (void)(_Func); return std::true_type(); } template std::false_type _IsCallable(_Function, ...) { return std::false_type(); } template<> struct _TaskTypeTraits { typedef void _TaskRetType; typedef _TypeSelectorNoAsync _AsyncKind; typedef _Unit_type _NormalizedTaskRetType; static const bool _IsAsyncTask = false; static const bool _IsUnwrappedTaskOrAsync = false; }; template task<_Type> _To_task(_Type t); template task _To_task_void(_Func f); struct _BadContinuationParamType { }; template auto _ReturnTypeHelper(_Type t, _Function _Func, int, int) -> decltype(_Func(_To_task(t))); template auto _ReturnTypeHelper(_Type t, _Function _Func, int, ...) -> decltype(_Func(t)); template auto _ReturnTypeHelper(_Type t, _Function _Func, ...) -> _BadContinuationParamType; template auto _IsTaskHelper(_Type t, _Function _Func, int, int) -> decltype(_Func(_To_task(t)), std::true_type()); template std::false_type _IsTaskHelper(_Type t, _Function _Func, int, ...); template auto _VoidReturnTypeHelper(_Function _Func, int, int) -> decltype(_Func(_To_task_void(_Func))); template auto _VoidReturnTypeHelper(_Function _Func, int, ...) -> decltype(_Func()); template auto _VoidIsTaskHelper(_Function _Func, int, int) -> decltype(_Func(_To_task_void(_Func)), std::true_type()); template std::false_type _VoidIsTaskHelper(_Function _Func, int, ...); template struct _FunctionTypeTraits { typedef decltype( _ReturnTypeHelper(stdx::declval<_ExpectedParameterType>(), stdx::declval<_Function>(), 0, 0)) _FuncRetType; static_assert(!std::is_same<_FuncRetType, _BadContinuationParamType>::value, "incorrect parameter type for the callable object in 'then'; consider _ExpectedParameterType or " "task<_ExpectedParameterType> (see below)"); typedef decltype( _IsTaskHelper(stdx::declval<_ExpectedParameterType>(), stdx::declval<_Function>(), 0, 0)) _Takes_task; }; template struct _FunctionTypeTraits<_Function, void> { typedef decltype(_VoidReturnTypeHelper(stdx::declval<_Function>(), 0, 0)) _FuncRetType; typedef decltype(_VoidIsTaskHelper(stdx::declval<_Function>(), 0, 0)) _Takes_task; }; template struct _ContinuationTypeTraits { typedef task< typename _TaskTypeTraits::_FuncRetType>::_TaskRetType> _TaskOfType; }; // _InitFunctorTypeTraits is used to decide whether a task constructed with a lambda should be unwrapped. Depending on // how the variable is declared, the constructor may or may not perform unwrapping. For eg. // // This declaration SHOULD NOT cause unwrapping // task> t1([]() -> task { // task t2([]() {}); // return t2; // }); // // This declaration SHOULD cause unwrapping // task> t1([]() -> task { // task t2([]() {}); // return t2; // }); // If the type of the task is the same as the return type of the function, no unwrapping should take place. Else normal // rules apply. template struct _InitFunctorTypeTraits { typedef typename _TaskTypeTraits<_FuncRetType>::_AsyncKind _AsyncKind; static const bool _IsAsyncTask = _TaskTypeTraits<_FuncRetType>::_IsAsyncTask; static const bool _IsUnwrappedTaskOrAsync = _TaskTypeTraits<_FuncRetType>::_IsUnwrappedTaskOrAsync; }; template struct _InitFunctorTypeTraits { typedef _TypeSelectorNoAsync _AsyncKind; static const bool _IsAsyncTask = false; static const bool _IsUnwrappedTaskOrAsync = false; }; /// /// Helper object used for LWT invocation. /// struct _TaskProcThunk { _TaskProcThunk(const std::function& _Callback) : _M_func(_Callback) {} static void _pplx_cdecl _Bridge(void* _PData) { _TaskProcThunk* _PThunk = reinterpret_cast<_TaskProcThunk*>(_PData); _Holder _ThunkHolder(_PThunk); _PThunk->_M_func(); } private: // RAII holder struct _Holder { _Holder(_TaskProcThunk* _PThunk) : _M_pThunk(_PThunk) {} ~_Holder() { delete _M_pThunk; } _TaskProcThunk* _M_pThunk; private: _Holder& operator=(const _Holder&); }; std::function _M_func; _TaskProcThunk& operator=(const _TaskProcThunk&); }; /// /// Schedule a functor with automatic inlining. Note that this is "fire and forget" scheduling, which cannot be /// waited on or canceled after scheduling. /// This schedule method will perform automatic inlining base on . /// /// /// The user functor need to be scheduled. /// /// /// The inlining scheduling policy for current functor. /// static void _ScheduleFuncWithAutoInline(const std::function& _Func, _TaskInliningMode_t _InliningMode) { _TaskCollection_t::_RunTask(&_TaskProcThunk::_Bridge, new _TaskProcThunk(_Func), _InliningMode); } class _ContextCallback { typedef std::function _CallbackFunction; #if defined(__cplusplus_winrt) public: static _ContextCallback _CaptureCurrent() { _ContextCallback _Context; _Context._Capture(); return _Context; } ~_ContextCallback() { _Reset(); } _ContextCallback(bool _DeferCapture = false) { if (_DeferCapture) { _M_context._M_captureMethod = _S_captureDeferred; } else { _M_context._M_pContextCallback = nullptr; } } // Resolves a context that was created as _S_captureDeferred based on the environment (ancestor, current context). void _Resolve(bool _CaptureCurrent) { if (_M_context._M_captureMethod == _S_captureDeferred) { _M_context._M_pContextCallback = nullptr; if (_CaptureCurrent) { if (_IsCurrentOriginSTA()) { _Capture(); } #if _UITHREADCTXT_SUPPORT else { // This method will fail if not called from the UI thread. HRESULT _Hr = CaptureUiThreadContext(&_M_context._M_pContextCallback); if (FAILED(_Hr)) { _M_context._M_pContextCallback = nullptr; } } #endif /* _UITHREADCTXT_SUPPORT */ } } } void _Capture() { HRESULT _Hr = CoGetObjectContext(IID_IContextCallback, reinterpret_cast(&_M_context._M_pContextCallback)); if (FAILED(_Hr)) { _M_context._M_pContextCallback = nullptr; } } _ContextCallback(const _ContextCallback& _Src) { _Assign(_Src._M_context._M_pContextCallback); } _ContextCallback(_ContextCallback&& _Src) { _M_context._M_pContextCallback = _Src._M_context._M_pContextCallback; _Src._M_context._M_pContextCallback = nullptr; } _ContextCallback& operator=(const _ContextCallback& _Src) { if (this != &_Src) { _Reset(); _Assign(_Src._M_context._M_pContextCallback); } return *this; } _ContextCallback& operator=(_ContextCallback&& _Src) { if (this != &_Src) { _M_context._M_pContextCallback = _Src._M_context._M_pContextCallback; _Src._M_context._M_pContextCallback = nullptr; } return *this; } bool _HasCapturedContext() const { _ASSERTE(_M_context._M_captureMethod != _S_captureDeferred); return (_M_context._M_pContextCallback != nullptr); } void _CallInContext(_CallbackFunction _Func) const { if (!_HasCapturedContext()) { _Func(); } else { ComCallData callData; ZeroMemory(&callData, sizeof(callData)); callData.pUserDefined = reinterpret_cast(&_Func); HRESULT _Hr = _M_context._M_pContextCallback->ContextCallback( &_Bridge, &callData, IID_ICallbackWithNoReentrancyToApplicationSTA, 5, nullptr); if (FAILED(_Hr)) { throw ::Platform::Exception::CreateException(_Hr); } } } bool operator==(const _ContextCallback& _Rhs) const { return (_M_context._M_pContextCallback == _Rhs._M_context._M_pContextCallback); } bool operator!=(const _ContextCallback& _Rhs) const { return !(operator==(_Rhs)); } private: void _Reset() { if (_M_context._M_captureMethod != _S_captureDeferred && _M_context._M_pContextCallback != nullptr) { _M_context._M_pContextCallback->Release(); } } void _Assign(IContextCallback* _PContextCallback) { _M_context._M_pContextCallback = _PContextCallback; if (_M_context._M_captureMethod != _S_captureDeferred && _M_context._M_pContextCallback != nullptr) { _M_context._M_pContextCallback->AddRef(); } } static HRESULT __stdcall _Bridge(ComCallData* _PParam) { _CallbackFunction* pFunc = reinterpret_cast<_CallbackFunction*>(_PParam->pUserDefined); (*pFunc)(); return S_OK; } // Returns the origin information for the caller (runtime / Windows Runtime apartment as far as task continuations // need know) static bool _IsCurrentOriginSTA() { APTTYPE _AptType; APTTYPEQUALIFIER _AptTypeQualifier; HRESULT hr = CoGetApartmentType(&_AptType, &_AptTypeQualifier); if (SUCCEEDED(hr)) { // We determine the origin of a task continuation by looking at where .then is called, so we can tell // whether to need to marshal the continuation back to the originating apartment. If an STA thread is in // executing in a neutral apartment when it schedules a continuation, we will not marshal continuations back // to the STA, since variables used within a neutral apartment are expected to be apartment neutral. switch (_AptType) { case APTTYPE_MAINSTA: case APTTYPE_STA: return true; default: break; } } return false; } union { IContextCallback* _M_pContextCallback; size_t _M_captureMethod; } _M_context; static const size_t _S_captureDeferred = 1; #else /* defined (__cplusplus_winrt) */ public: static _ContextCallback _CaptureCurrent() { return _ContextCallback(); } _ContextCallback(bool = false) {} _ContextCallback(const _ContextCallback&) {} _ContextCallback(_ContextCallback&&) {} _ContextCallback& operator=(const _ContextCallback&) { return *this; } _ContextCallback& operator=(_ContextCallback&&) { return *this; } bool _HasCapturedContext() const { return false; } void _Resolve(bool) const {} void _CallInContext(_CallbackFunction _Func) const { _Func(); } bool operator==(const _ContextCallback&) const { return true; } bool operator!=(const _ContextCallback&) const { return false; } #endif /* defined (__cplusplus_winrt) */ }; template struct _ResultHolder { void Set(const _Type& _type) { _Result = _type; } _Type Get() { return _Result; } _Type _Result; }; #if defined(__cplusplus_winrt) template struct _ResultHolder<_Type ^> { void Set(_Type ^ const& _type) { _M_Result = _type; } _Type ^ Get() { return _M_Result.Get(); } private : // ::Platform::Agile handle specialization of all hats // including ::Platform::String and ::Platform::Array ::Platform::Agile<_Type ^> _M_Result; }; // // The below are for composability with tasks auto-created from when_any / when_all / && / || constructs. // template struct _ResultHolder> { void Set(const std::vector<_Type ^>& _type) { _Result.reserve(_type.size()); for (auto _PTask = _type.begin(); _PTask != _type.end(); ++_PTask) { _Result.emplace_back(*_PTask); } } std::vector<_Type ^> Get() { // Return vectory with the objects that are marshaled in the proper apartment std::vector<_Type ^> _Return; _Return.reserve(_Result.size()); for (auto _PTask = _Result.begin(); _PTask != _Result.end(); ++_PTask) { _Return.push_back( _PTask->Get()); // Platform::Agile will marshal the object to appropriate apartment if necessary } return _Return; } std::vector<::Platform::Agile<_Type ^>> _Result; }; template struct _ResultHolder> { void Set(const std::pair<_Type ^, size_t>& _type) { _M_Result = _type; } std::pair<_Type ^, size_t> Get() { return std::make_pair(_M_Result.first.Get(), _M_Result.second); } private: std::pair<::Platform::Agile<_Type ^>, size_t> _M_Result; }; #endif /* defined (__cplusplus_winrt) */ // An exception thrown by the task body is captured in an exception holder and it is shared with all value based // continuations rooted at the task. The exception is 'observed' if the user invokes get()/wait() on any of the tasks // that are sharing this exception holder. If the exception is not observed by the time the internal object owned by the // shared pointer destructs, the process will fail fast. struct _ExceptionHolder { private: void ReportUnhandledError() { #if _MSC_VER >= 1800 && defined(__cplusplus_winrt) if (_M_winRTException != nullptr) { ::Platform::Details::ReportUnhandledError(_M_winRTException); } #endif /* defined (__cplusplus_winrt) */ } public: explicit _ExceptionHolder(const std::exception_ptr& _E, const _TaskCreationCallstack& _stackTrace) : _M_exceptionObserved(0) , _M_stdException(_E) , _M_stackTrace(_stackTrace) #if defined(__cplusplus_winrt) , _M_winRTException(nullptr) #endif /* defined (__cplusplus_winrt) */ { } #if defined(__cplusplus_winrt) explicit _ExceptionHolder(::Platform::Exception ^ _E, const _TaskCreationCallstack& _stackTrace) : _M_exceptionObserved(0), _M_winRTException(_E), _M_stackTrace(_stackTrace) { } #endif /* defined (__cplusplus_winrt) */ __declspec(noinline) ~_ExceptionHolder() { if (_M_exceptionObserved == 0) { // If you are trapped here, it means an exception thrown in task chain didn't get handled. // Please add task-based continuation to handle all exceptions coming from tasks. // this->_M_stackTrace keeps the creation callstack of the task generates this exception. _REPORT_PPLTASK_UNOBSERVED_EXCEPTION(); } } void _RethrowUserException() { if (_M_exceptionObserved == 0) { atomic_exchange(_M_exceptionObserved, 1l); } #if defined(__cplusplus_winrt) if (_M_winRTException != nullptr) { throw _M_winRTException; } #endif /* defined (__cplusplus_winrt) */ std::rethrow_exception(_M_stdException); } // A variable that remembers if this exception was every rethrown into user code (and hence handled by the user). // Exceptions that are unobserved when the exception holder is destructed will terminate the process. atomic_long _M_exceptionObserved; // Either _M_stdException or _M_winRTException is populated based on the type of exception encountered. std::exception_ptr _M_stdException; #if defined(__cplusplus_winrt) ::Platform::Exception ^ _M_winRTException; #endif /* defined (__cplusplus_winrt) */ // Disassembling this value will point to a source instruction right after a call instruction. If the call is to // create_task, a task constructor or the then method, the task created by that method is the one that encountered // this exception. If the call is to task_completion_event::set_exception, the set_exception method was the source // of the exception. DO NOT REMOVE THIS VARIABLE. It is extremely helpful for debugging. _TaskCreationCallstack _M_stackTrace; }; #if defined(__cplusplus_winrt) /// /// Base converter class for converting asynchronous interfaces to IAsyncOperation /// template ref struct _AsyncInfoImpl abstract : Windows::Foundation::IAsyncOperation<_Result> { internal : // The async action, action with progress or operation with progress that this stub forwards to. ::Platform::Agile<_AsyncOperationType> _M_asyncInfo; Windows::Foundation::AsyncOperationCompletedHandler<_Result> ^ _M_CompletedHandler; _AsyncInfoImpl(_AsyncOperationType _AsyncInfo) : _M_asyncInfo(_AsyncInfo) {} public: virtual void Cancel() { _M_asyncInfo.Get()->Cancel(); } virtual void Close() { _M_asyncInfo.Get()->Close(); } virtual property Windows::Foundation::HResult ErrorCode { Windows::Foundation::HResult get() { return _M_asyncInfo.Get()->ErrorCode; } } virtual property UINT Id { UINT get() { return _M_asyncInfo.Get()->Id; } } virtual property Windows::Foundation::AsyncStatus Status { Windows::Foundation::AsyncStatus get() { return _M_asyncInfo.Get()->Status; } } virtual _Result GetResults() { throw std::runtime_error("derived class must implement"); } virtual property Windows::Foundation::AsyncOperationCompletedHandler<_Result> ^ Completed { Windows::Foundation::AsyncOperationCompletedHandler<_Result> ^ get() { return _M_CompletedHandler; } void set(Windows::Foundation::AsyncOperationCompletedHandler<_Result> ^ value) { _M_CompletedHandler = value; _M_asyncInfo.Get()->Completed = ref new _CompletionHandlerType([&](_AsyncOperationType, Windows::Foundation::AsyncStatus status) { _M_CompletedHandler->Invoke(this, status); }); } } }; /// /// Class _IAsyncOperationWithProgressToAsyncOperationConverter is used to convert an instance of /// IAsyncOperationWithProgress into IAsyncOperation /// template ref struct _IAsyncOperationWithProgressToAsyncOperationConverter sealed : _AsyncInfoImpl ^ , Windows::Foundation::AsyncOperationWithProgressCompletedHandler<_Result, _Progress>, _Result> { internal : _IAsyncOperationWithProgressToAsyncOperationConverter( Windows::Foundation::IAsyncOperationWithProgress<_Result, _Progress> ^ _Operation) : _AsyncInfoImpl ^, Windows::Foundation::AsyncOperationWithProgressCompletedHandler<_Result, _Progress>, _Result>(_Operation) { } public: virtual _Result GetResults() override { return _M_asyncInfo.Get()->GetResults(); } }; /// /// Class _IAsyncActionToAsyncOperationConverter is used to convert an instance of IAsyncAction into /// IAsyncOperation<_Unit_type> /// ref struct _IAsyncActionToAsyncOperationConverter sealed : _AsyncInfoImpl { internal : _IAsyncActionToAsyncOperationConverter(Windows::Foundation::IAsyncAction ^ _Operation) : _AsyncInfoImpl(_Operation) { } public: virtual details::_Unit_type GetResults() override { // Invoke GetResults on the IAsyncAction to allow exceptions to be thrown to higher layers before returning a // dummy value. _M_asyncInfo.Get()->GetResults(); return details::_Unit_type(); } }; /// /// Class _IAsyncActionWithProgressToAsyncOperationConverter is used to convert an instance of /// IAsyncActionWithProgress into IAsyncOperation<_Unit_type> /// template ref struct _IAsyncActionWithProgressToAsyncOperationConverter sealed : _AsyncInfoImpl ^ , Windows::Foundation::AsyncActionWithProgressCompletedHandler<_Progress>, details::_Unit_type> { internal : _IAsyncActionWithProgressToAsyncOperationConverter(Windows::Foundation::IAsyncActionWithProgress<_Progress> ^ _Action) : _AsyncInfoImpl ^, Windows::Foundation::AsyncActionWithProgressCompletedHandler<_Progress>, details::_Unit_type>(_Action) { } public: virtual details::_Unit_type GetResults() override { // Invoke GetResults on the IAsyncActionWithProgress to allow exceptions to be thrown before returning a dummy // value. _M_asyncInfo.Get()->GetResults(); return details::_Unit_type(); } }; #endif /* defined (__cplusplus_winrt) */ } // namespace details /// /// The task_continuation_context class allows you to specify where you would like a continuation to be /// executed. It is only useful to use this class from a Windows Store app. For non-Windows Store apps, the task /// continuation's execution context is determined by the runtime, and not configurable. /// /// /**/ class task_continuation_context : public details::_ContextCallback { public: /// /// Creates the default task continuation context. /// /// /// The default continuation context. /// /// /// The default context is used if you don't specify a continuation context when you call the then /// method. In Windows applications for Windows 7 and below, as well as desktop applications on Windows 8 and /// higher, the runtime determines where task continuations will execute. However, in a Windows Store app, the /// default continuation context for a continuation on an apartment aware task is the apartment where /// then is invoked. An apartment aware task is a task that unwraps a Windows Runtime /// IAsyncInfo interface, or a task that is descended from such a task. Therefore, if you schedule a /// continuation on an apartment aware task in a Windows Runtime STA, the continuation will execute in that /// STA. A continuation on a non-apartment aware task will execute in a context the Runtime /// chooses. /// /**/ static task_continuation_context use_default() { #if defined(__cplusplus_winrt) // The callback context is created with the context set to CaptureDeferred and resolved when it is used in // .then() return task_continuation_context( true); // sets it to deferred, is resolved in the constructor of _ContinuationTaskHandle #else /* defined (__cplusplus_winrt) */ return task_continuation_context(); #endif /* defined (__cplusplus_winrt) */ } #if defined(__cplusplus_winrt) /// /// Creates a task continuation context which allows the Runtime to choose the execution context for a /// continuation. /// /// /// A task continuation context that represents an arbitrary location. /// /// /// When this continuation context is used the continuation will execute in a context the runtime chooses even /// if the antecedent task is apartment aware. use_arbitrary can be used to turn off the default /// behavior for a continuation on an apartment aware task created in an STA. This method is only /// available to Windows Store apps. /// /**/ static task_continuation_context use_arbitrary() { task_continuation_context _Arbitrary(true); _Arbitrary._Resolve(false); return _Arbitrary; } /// /// Returns a task continuation context object that represents the current execution context. /// /// /// The current execution context. /// /// /// This method captures the caller's Windows Runtime context so that continuations can be executed in the right /// apartment. The value returned by use_current can be used to indicate to the Runtime that the /// continuation should execute in the captured context (STA vs MTA) regardless of whether or not the antecedent /// task is apartment aware. An apartment aware task is a task that unwraps a Windows Runtime IAsyncInfo /// interface, or a task that is descended from such a task. This method is only available to /// Windows Store apps. /// /**/ static task_continuation_context use_current() { task_continuation_context _Current(true); _Current._Resolve(true); return _Current; } #endif /* defined (__cplusplus_winrt) */ private: task_continuation_context(bool _DeferCapture = false) : details::_ContextCallback(_DeferCapture) {} }; class task_options; namespace details { struct _Internal_task_options { bool _M_hasPresetCreationCallstack; _TaskCreationCallstack _M_presetCreationCallstack; void _set_creation_callstack(const _TaskCreationCallstack& _callstack) { _M_hasPresetCreationCallstack = true; _M_presetCreationCallstack = _callstack; } _Internal_task_options() { _M_hasPresetCreationCallstack = false; } }; inline _Internal_task_options& _get_internal_task_options(task_options& options); inline const _Internal_task_options& _get_internal_task_options(const task_options& options); } // namespace details /// /// Represents the allowed options for creating a task /// class task_options { public: /// /// Default list of task creation options /// task_options() : _M_Scheduler(get_ambient_scheduler()) , _M_CancellationToken(cancellation_token::none()) , _M_ContinuationContext(task_continuation_context::use_default()) , _M_HasCancellationToken(false) , _M_HasScheduler(false) { } /// /// Task option that specify a cancellation token /// task_options(cancellation_token _Token) : _M_Scheduler(get_ambient_scheduler()) , _M_CancellationToken(_Token) , _M_ContinuationContext(task_continuation_context::use_default()) , _M_HasCancellationToken(true) , _M_HasScheduler(false) { } /// /// Task option that specify a continuation context. This is valid only for continuations (then) /// task_options(task_continuation_context _ContinuationContext) : _M_Scheduler(get_ambient_scheduler()) , _M_CancellationToken(cancellation_token::none()) , _M_ContinuationContext(_ContinuationContext) , _M_HasCancellationToken(false) , _M_HasScheduler(false) { } /// /// Task option that specify a cancellation token and a continuation context. This is valid only for /// continuations (then) /// task_options(cancellation_token _Token, task_continuation_context _ContinuationContext) : _M_Scheduler(get_ambient_scheduler()) , _M_CancellationToken(_Token) , _M_ContinuationContext(_ContinuationContext) , _M_HasCancellationToken(false) , _M_HasScheduler(false) { } /// /// Task option that specify a scheduler with shared lifetime /// template task_options(std::shared_ptr<_SchedType> _Scheduler) : _M_Scheduler(std::move(_Scheduler)) , _M_CancellationToken(cancellation_token::none()) , _M_ContinuationContext(task_continuation_context::use_default()) , _M_HasCancellationToken(false) , _M_HasScheduler(true) { } /// /// Task option that specify a scheduler reference /// task_options(scheduler_interface& _Scheduler) : _M_Scheduler(&_Scheduler) , _M_CancellationToken(cancellation_token::none()) , _M_ContinuationContext(task_continuation_context::use_default()) , _M_HasCancellationToken(false) , _M_HasScheduler(true) { } /// /// Task option that specify a scheduler /// task_options(scheduler_ptr _Scheduler) : _M_Scheduler(std::move(_Scheduler)) , _M_CancellationToken(cancellation_token::none()) , _M_ContinuationContext(task_continuation_context::use_default()) , _M_HasCancellationToken(false) , _M_HasScheduler(true) { } /// /// Task option copy constructor /// task_options(const task_options& _TaskOptions) : _M_Scheduler(_TaskOptions.get_scheduler()) , _M_CancellationToken(_TaskOptions.get_cancellation_token()) , _M_ContinuationContext(_TaskOptions.get_continuation_context()) , _M_HasCancellationToken(_TaskOptions.has_cancellation_token()) , _M_HasScheduler(_TaskOptions.has_scheduler()) { } /// /// Sets the given token in the options /// void set_cancellation_token(cancellation_token _Token) { _M_CancellationToken = _Token; _M_HasCancellationToken = true; } /// /// Sets the given continuation context in the options /// void set_continuation_context(task_continuation_context _ContinuationContext) { _M_ContinuationContext = _ContinuationContext; } /// /// Indicates whether a cancellation token was specified by the user /// bool has_cancellation_token() const { return _M_HasCancellationToken; } /// /// Returns the cancellation token /// cancellation_token get_cancellation_token() const { return _M_CancellationToken; } /// /// Returns the continuation context /// task_continuation_context get_continuation_context() const { return _M_ContinuationContext; } /// /// Indicates whether a scheduler n was specified by the user /// bool has_scheduler() const { return _M_HasScheduler; } /// /// Returns the scheduler /// scheduler_ptr get_scheduler() const { return _M_Scheduler; } private: task_options const& operator=(task_options const& _Right); friend details::_Internal_task_options& details::_get_internal_task_options(task_options&); friend const details::_Internal_task_options& details::_get_internal_task_options(const task_options&); scheduler_ptr _M_Scheduler; cancellation_token _M_CancellationToken; task_continuation_context _M_ContinuationContext; details::_Internal_task_options _M_InternalTaskOptions; bool _M_HasCancellationToken; bool _M_HasScheduler; }; namespace details { inline _Internal_task_options& _get_internal_task_options(task_options& options) { return options._M_InternalTaskOptions; } inline const _Internal_task_options& _get_internal_task_options(const task_options& options) { return options._M_InternalTaskOptions; } struct _Task_impl_base; template struct _Task_impl; template struct _Task_ptr { typedef std::shared_ptr<_Task_impl<_ReturnType>> _Type; static _Type _Make(_CancellationTokenState* _Ct, scheduler_ptr _Scheduler_arg) { return std::make_shared<_Task_impl<_ReturnType>>(_Ct, _Scheduler_arg); } }; typedef _TaskCollection_t::_TaskProcHandle_t _UnrealizedChore_t; typedef std::shared_ptr<_Task_impl_base> _Task_ptr_base; // The weak-typed base task handler for continuation tasks. struct _ContinuationTaskHandleBase : _UnrealizedChore_t { _ContinuationTaskHandleBase* _M_next; task_continuation_context _M_continuationContext; bool _M_isTaskBasedContinuation; // This field gives inlining scheduling policy for current chore. _TaskInliningMode_t _M_inliningMode; virtual _Task_ptr_base _GetTaskImplBase() const = 0; _ContinuationTaskHandleBase() : _M_next(nullptr) , _M_continuationContext(task_continuation_context::use_default()) , _M_isTaskBasedContinuation(false) , _M_inliningMode(details::_NoInline) { } virtual ~_ContinuationTaskHandleBase() {} }; #if PPLX_TASK_ASYNC_LOGGING // GUID used for identifying causality logs from PPLTask const ::Platform::Guid _PPLTaskCausalityPlatformID( 0x7A76B220, 0xA758, 0x4E6E, 0xB0, 0xE0, 0xD7, 0xC6, 0xD7, 0x4A, 0x88, 0xFE); __declspec(selectany) volatile long _isCausalitySupported = 0; inline bool _IsCausalitySupported() { #if WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_DESKTOP) if (_isCausalitySupported == 0) { long _causality = 1; OSVERSIONINFOEX _osvi = {}; _osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX); // The Causality is supported on Windows version higher than Windows 8 _osvi.dwMajorVersion = 6; _osvi.dwMinorVersion = 3; DWORDLONG _conditionMask = 0; VER_SET_CONDITION(_conditionMask, VER_MAJORVERSION, VER_GREATER_EQUAL); VER_SET_CONDITION(_conditionMask, VER_MINORVERSION, VER_GREATER_EQUAL); if (::VerifyVersionInfo(&_osvi, VER_MAJORVERSION | VER_MINORVERSION, _conditionMask)) { _causality = 2; } _isCausalitySupported = _causality; return _causality == 2; } return _isCausalitySupported == 2 ? true : false; #else return true; #endif } // Stateful logger rests inside task_impl_base. struct _TaskEventLogger { _Task_impl_base* _M_task; bool _M_scheduled; bool _M_taskPostEventStarted; // Log before scheduling task void _LogScheduleTask(bool _isContinuation) { if (details::_IsCausalitySupported()) { ::Windows::Foundation::Diagnostics::AsyncCausalityTracer::TraceOperationCreation( ::Windows::Foundation::Diagnostics::CausalityTraceLevel::Required, ::Windows::Foundation::Diagnostics::CausalitySource::Library, _PPLTaskCausalityPlatformID, reinterpret_cast(_M_task), _isContinuation ? "pplx::PPLTask::ScheduleContinuationTask" : "pplx::PPLTask::ScheduleTask", 0); _M_scheduled = true; } } // It will log the cancel event but not canceled state. _LogTaskCompleted will log the terminal state, which // includes cancel state. void _LogCancelTask() { if (details::_IsCausalitySupported()) { ::Windows::Foundation::Diagnostics::AsyncCausalityTracer::TraceOperationRelation( ::Windows::Foundation::Diagnostics::CausalityTraceLevel::Important, ::Windows::Foundation::Diagnostics::CausalitySource::Library, _PPLTaskCausalityPlatformID, reinterpret_cast(_M_task), ::Windows::Foundation::Diagnostics::CausalityRelation::Cancel); } } // Log when task reaches terminal state. Note: the task can reach a terminal state (by cancellation or exception) // without having run void _LogTaskCompleted(); // Log when task body (which includes user lambda and other scheduling code) begin to run void _LogTaskExecutionStarted() {} // Log when task body finish executing void _LogTaskExecutionCompleted() { if (_M_taskPostEventStarted && details::_IsCausalitySupported()) { ::Windows::Foundation::Diagnostics::AsyncCausalityTracer::TraceSynchronousWorkCompletion( ::Windows::Foundation::Diagnostics::CausalityTraceLevel::Required, ::Windows::Foundation::Diagnostics::CausalitySource::Library, ::Windows::Foundation::Diagnostics::CausalitySynchronousWork::CompletionNotification); } } // Log right before user lambda being invoked void _LogWorkItemStarted() { if (details::_IsCausalitySupported()) { ::Windows::Foundation::Diagnostics::AsyncCausalityTracer::TraceSynchronousWorkStart( ::Windows::Foundation::Diagnostics::CausalityTraceLevel::Required, ::Windows::Foundation::Diagnostics::CausalitySource::Library, _PPLTaskCausalityPlatformID, reinterpret_cast(_M_task), ::Windows::Foundation::Diagnostics::CausalitySynchronousWork::Execution); } } // Log right after user lambda being invoked void _LogWorkItemCompleted() { if (details::_IsCausalitySupported()) { ::Windows::Foundation::Diagnostics::AsyncCausalityTracer::TraceSynchronousWorkCompletion( ::Windows::Foundation::Diagnostics::CausalityTraceLevel::Required, ::Windows::Foundation::Diagnostics::CausalitySource::Library, ::Windows::Foundation::Diagnostics::CausalitySynchronousWork::Execution); ::Windows::Foundation::Diagnostics::AsyncCausalityTracer::TraceSynchronousWorkStart( ::Windows::Foundation::Diagnostics::CausalityTraceLevel::Required, ::Windows::Foundation::Diagnostics::CausalitySource::Library, _PPLTaskCausalityPlatformID, reinterpret_cast(_M_task), ::Windows::Foundation::Diagnostics::CausalitySynchronousWork::CompletionNotification); _M_taskPostEventStarted = true; } } _TaskEventLogger(_Task_impl_base* _task) : _M_task(_task) { _M_scheduled = false; _M_taskPostEventStarted = false; } }; // Exception safe logger for user lambda struct _TaskWorkItemRAIILogger { _TaskEventLogger& _M_logger; _TaskWorkItemRAIILogger(_TaskEventLogger& _taskHandleLogger) : _M_logger(_taskHandleLogger) { _M_logger._LogWorkItemStarted(); } ~_TaskWorkItemRAIILogger() { _M_logger._LogWorkItemCompleted(); } _TaskWorkItemRAIILogger& operator=(const _TaskWorkItemRAIILogger&); // cannot be assigned }; #else inline void _LogCancelTask(_Task_impl_base*) {} struct _TaskEventLogger { void _LogScheduleTask(bool) {} void _LogCancelTask() {} void _LogWorkItemStarted() {} void _LogWorkItemCompleted() {} void _LogTaskExecutionStarted() {} void _LogTaskExecutionCompleted() {} void _LogTaskCompleted() {} _TaskEventLogger(_Task_impl_base*) {} }; struct _TaskWorkItemRAIILogger { _TaskWorkItemRAIILogger(_TaskEventLogger&) {} }; #endif /// /// The _PPLTaskHandle is the strong-typed task handle base. All user task functions need to be wrapped in this task /// handler to be executable by PPL. By deriving from a different _BaseTaskHandle, it can be used for both initial /// tasks and continuation tasks. For initial tasks, _PPLTaskHandle will be derived from _UnrealizedChore_t, and for /// continuation tasks, it will be derived from _ContinuationTaskHandleBase. The life time of the _PPLTaskHandle /// object is be managed by runtime if task handle is scheduled. /// /// /// The result type of the _Task_impl. /// /// /// The derived task handle class. The operator () needs to be implemented. /// /// /// The base class from which _PPLTaskHandle should be derived. This is either _UnrealizedChore_t or /// _ContinuationTaskHandleBase. /// template struct _PPLTaskHandle : _BaseTaskHandle { _PPLTaskHandle(const typename _Task_ptr<_ReturnType>::_Type& _PTask) : _M_pTask(_PTask) {} virtual ~_PPLTaskHandle() { // Here is the sink of all task completion code paths _M_pTask->_M_taskEventLogger._LogTaskCompleted(); } virtual void invoke() const { // All exceptions should be rethrown to finish cleanup of the task collection. They will be caught and handled // by the runtime. _ASSERTE((bool)_M_pTask); if (!_M_pTask->_TransitionedToStarted()) { static_cast(this)->_SyncCancelAndPropagateException(); return; } _M_pTask->_M_taskEventLogger._LogTaskExecutionStarted(); try { // All derived task handle must implement this contract function. static_cast(this)->_Perform(); } catch (const task_canceled&) { _M_pTask->_Cancel(true); } catch (const _Interruption_exception&) { _M_pTask->_Cancel(true); } #if defined(__cplusplus_winrt) catch (::Platform::Exception ^ _E) { _M_pTask->_CancelWithException(_E); } #endif /* defined (__cplusplus_winrt) */ catch (...) { _M_pTask->_CancelWithException(std::current_exception()); } _M_pTask->_M_taskEventLogger._LogTaskExecutionCompleted(); } // Cast _M_pTask pointer to "type-less" _Task_impl_base pointer, which can be used in _ContinuationTaskHandleBase. // The return value should be automatically optimized by R-value ref. _Task_ptr_base _GetTaskImplBase() const { return _M_pTask; } typename _Task_ptr<_ReturnType>::_Type _M_pTask; private: _PPLTaskHandle const& operator=(_PPLTaskHandle const&); // no assignment operator }; /// /// The base implementation of a first-class task. This class contains all the non-type specific /// implementation details of the task. /// /**/ struct _Task_impl_base { enum _TaskInternalState { // Tracks the state of the task, rather than the task collection on which the task is scheduled _Created, _Started, _PendingCancel, _Completed, _Canceled }; // _M_taskEventLogger - 'this' : used in base member initializer list #if defined(_MSC_VER) #pragma warning(push) #pragma warning(disable : 4355) #endif _Task_impl_base(_CancellationTokenState* _PTokenState, scheduler_ptr _Scheduler_arg) : _M_TaskState(_Created) , _M_fFromAsync(false) , _M_fUnwrappedTask(false) , _M_pRegistration(nullptr) , _M_Continuations(nullptr) , _M_TaskCollection(_Scheduler_arg) , _M_taskEventLogger(this) { // Set cancellation token _M_pTokenState = _PTokenState; _ASSERTE(_M_pTokenState != nullptr); if (_M_pTokenState != _CancellationTokenState::_None()) _M_pTokenState->_Reference(); } #if defined(_MSC_VER) #pragma warning(pop) #endif virtual ~_Task_impl_base() { _ASSERTE(_M_pTokenState != nullptr); if (_M_pTokenState != _CancellationTokenState::_None()) { _M_pTokenState->_Release(); } } task_status _Wait() { bool _DoWait = true; #if defined(__cplusplus_winrt) if (_IsNonBlockingThread()) { // In order to prevent Windows Runtime STA threads from blocking the UI, calling task.wait() task.get() is // illegal if task has not been completed. if (!_IsCompleted() && !_IsCanceled()) { throw invalid_operation("Illegal to wait on a task in a Windows Runtime STA"); } else { // Task Continuations are 'scheduled' *inside* the chore that is executing on the ancestors's task // group. If a continuation needs to be marshaled to a different apartment, instead of scheduling, we // make a synchronous cross apartment COM call to execute the continuation. If it then happens to do // something which waits on the ancestor (say it calls .get(), which task based continuations are wont // to do), waiting on the task group results in on the chore that is making this synchronous callback, // which causes a deadlock. To avoid this, we test the state ancestor's event , and we will NOT wait on // if it has finished execution (which means now we are on the inline synchronous callback). _DoWait = false; } } #endif /* defined (__cplusplus_winrt) */ if (_DoWait) { // If this task was created from a Windows Runtime async operation, do not attempt to inline it. The // async operation will take place on a thread in the appropriate apartment Simply wait for the completed // event to be set. if (_M_fFromAsync) { _M_TaskCollection._Wait(); } else { // Wait on the task collection to complete. The task collection is guaranteed to still be // valid since the task must be still within scope so that the _Task_impl_base destructor // has not yet been called. This call to _Wait potentially inlines execution of work. try { // Invoking wait on a task collection resets the state of the task collection. This means that // if the task collection itself were canceled, or had encountered an exception, only the first // call to wait will receive this status. However, both cancellation and exceptions flowing through // tasks set state in the task impl itself. // When it returns canceled, either work chore or the cancel thread should already have set task's // state properly -- canceled state or completed state (because there was no interruption point). // For tasks with unwrapped tasks, we should not change the state of current task, since the // unwrapped task are still running. _M_TaskCollection._RunAndWait(); } catch (details::_Interruption_exception&) { // The _TaskCollection will never be an interruption point since it has a none token. _ASSERTE(false); } catch (task_canceled&) { // task_canceled is a special exception thrown by cancel_current_task. The spec states that // cancel_current_task must be called from code that is executed within the task (throwing it from // parallel work created by and waited upon by the task is acceptable). We can safely assume that // the task wrapper _PPLTaskHandle::operator() has seen the exception and canceled the task. Swallow // the exception here. _ASSERTE(_IsCanceled()); } #if defined(__cplusplus_winrt) catch (::Platform::Exception ^ _E) { // Its possible the task body hasn't seen the exception, if so we need to cancel with exception // here. if (!_HasUserException()) { _CancelWithException(_E); } // Rethrow will mark the exception as observed. _M_exceptionHolder->_RethrowUserException(); } #endif /* defined (__cplusplus_winrt) */ catch (...) { // Its possible the task body hasn't seen the exception, if so we need to cancel with exception // here. if (!_HasUserException()) { _CancelWithException(std::current_exception()); } // Rethrow will mark the exception as observed. _M_exceptionHolder->_RethrowUserException(); } // If the lambda body for this task (executed or waited upon in _RunAndWait above) happened to return a // task which is to be unwrapped and plumbed to the output of this task, we must not only wait on the // lambda body, we must wait on the **INNER** body. It is in theory possible that we could inline such // if we plumb a series of things through; however, this takes the tact of simply waiting upon the // completion signal. if (_M_fUnwrappedTask) { _M_TaskCollection._Wait(); } } } if (_HasUserException()) { _M_exceptionHolder->_RethrowUserException(); } else if (_IsCanceled()) { return canceled; } _ASSERTE(_IsCompleted()); return completed; } /// /// Requests cancellation on the task and schedules continuations if the task can be transitioned to a terminal /// state. /// /// /// Set to true if the cancel takes place as a result of the task body encountering an exception, or because an /// ancestor or task_completion_event the task was registered with were canceled with an exception. A /// synchronous cancel is one that assures the task could not be running on a different thread at the time the /// cancellation is in progress. An asynchronous cancel is one where the thread performing the cancel has no /// control over the thread that could be executing the task, that is the task could execute concurrently while /// the cancellation is in progress. /// /// /// Whether an exception other than the internal runtime cancellation exceptions caused this cancellation. /// /// /// Whether this exception came from an ancestor task or a task_completion_event as opposed to an exception that /// was encountered by the task itself. Only valid when _UserException is set to true. /// /// /// The exception holder that represents the exception. Only valid when _UserException is set to true. /// virtual bool _CancelAndRunContinuations(bool _SynchronousCancel, bool _UserException, bool _PropagatedFromAncestor, const std::shared_ptr<_ExceptionHolder>& _ExHolder) = 0; bool _Cancel(bool _SynchronousCancel) { // Send in a dummy value for exception. It is not used when the first parameter is false. return _CancelAndRunContinuations(_SynchronousCancel, false, false, _M_exceptionHolder); } bool _CancelWithExceptionHolder(const std::shared_ptr<_ExceptionHolder>& _ExHolder, bool _PropagatedFromAncestor) { // This task was canceled because an ancestor task encountered an exception. return _CancelAndRunContinuations(true, true, _PropagatedFromAncestor, _ExHolder); } #if defined(__cplusplus_winrt) bool _CancelWithException(::Platform::Exception ^ _Exception) { // This task was canceled because the task body encountered an exception. _ASSERTE(!_HasUserException()); return _CancelAndRunContinuations( true, true, false, std::make_shared<_ExceptionHolder>(_Exception, _GetTaskCreationCallstack())); } #endif /* defined (__cplusplus_winrt) */ bool _CancelWithException(const std::exception_ptr& _Exception) { // This task was canceled because the task body encountered an exception. _ASSERTE(!_HasUserException()); return _CancelAndRunContinuations( true, true, false, std::make_shared<_ExceptionHolder>(_Exception, _GetTaskCreationCallstack())); } void _RegisterCancellation(std::weak_ptr<_Task_impl_base> _WeakPtr) { _ASSERTE(details::_CancellationTokenState::_IsValid(_M_pTokenState)); auto _CancellationCallback = [_WeakPtr]() { // Taking ownership of the task prevents dead lock during destruction // if the destructor waits for the cancellations to be finished auto _task = _WeakPtr.lock(); if (_task != nullptr) _task->_Cancel(false); }; _M_pRegistration = new details::_CancellationTokenCallback(_CancellationCallback); _M_pTokenState->_RegisterCallback(_M_pRegistration); } void _DeregisterCancellation() { if (_M_pRegistration != nullptr) { _M_pTokenState->_DeregisterCallback(_M_pRegistration); _M_pRegistration->_Release(); _M_pRegistration = nullptr; } } bool _IsCreated() { return (_M_TaskState == _Created); } bool _IsStarted() { return (_M_TaskState == _Started); } bool _IsPendingCancel() { return (_M_TaskState == _PendingCancel); } bool _IsCompleted() { return (_M_TaskState == _Completed); } bool _IsCanceled() { return (_M_TaskState == _Canceled); } bool _HasUserException() { return static_cast(_M_exceptionHolder); } const std::shared_ptr<_ExceptionHolder>& _GetExceptionHolder() { _ASSERTE(_HasUserException()); return _M_exceptionHolder; } bool _IsApartmentAware() { return _M_fFromAsync; } void _SetAsync(bool _Async = true) { _M_fFromAsync = _Async; } _TaskCreationCallstack _GetTaskCreationCallstack() { return _M_pTaskCreationCallstack; } void _SetTaskCreationCallstack(const _TaskCreationCallstack& _Callstack) { _M_pTaskCreationCallstack = _Callstack; } /// /// Helper function to schedule the task on the Task Collection. /// /// /// The task chore handle that need to be executed. /// /// /// The inlining scheduling policy for current _PTaskHandle. /// void _ScheduleTask(_UnrealizedChore_t* _PTaskHandle, _TaskInliningMode_t _InliningMode) { try { _M_TaskCollection._ScheduleTask(_PTaskHandle, _InliningMode); } catch (const task_canceled&) { // task_canceled is a special exception thrown by cancel_current_task. The spec states that // cancel_current_task must be called from code that is executed within the task (throwing it from parallel // work created by and waited upon by the task is acceptable). We can safely assume that the task wrapper // _PPLTaskHandle::operator() has seen the exception and canceled the task. Swallow the exception here. _ASSERTE(_IsCanceled()); } catch (const _Interruption_exception&) { // The _TaskCollection will never be an interruption point since it has a none token. _ASSERTE(false); } catch (...) { // The exception could have come from two places: // 1. From the chore body, so it already should have been caught and canceled. // In this case swallow the exception. // 2. From trying to actually schedule the task on the scheduler. // In this case cancel the task with the current exception, otherwise the // task will never be signaled leading to deadlock when waiting on the task. if (!_HasUserException()) { _CancelWithException(std::current_exception()); } } } /// /// Function executes a continuation. This function is recorded by a parent task implementation /// when a continuation is created in order to execute later. /// /// /// The continuation task chore handle that need to be executed. /// /**/ void _RunContinuation(_ContinuationTaskHandleBase* _PTaskHandle) { _Task_ptr_base _ImplBase = _PTaskHandle->_GetTaskImplBase(); if (_IsCanceled() && !_PTaskHandle->_M_isTaskBasedContinuation) { if (_HasUserException()) { // If the ancestor encountered an exception, transfer the exception to the continuation // This traverses down the tree to propagate the exception. _ImplBase->_CancelWithExceptionHolder(_GetExceptionHolder(), true); } else { // If the ancestor was canceled, then your own execution should be canceled. // This traverses down the tree to cancel it. _ImplBase->_Cancel(true); } } else { // This can only run when the ancestor has completed or it's a task based continuation that fires when a // task is canceled (with or without a user exception). _ASSERTE(_IsCompleted() || _PTaskHandle->_M_isTaskBasedContinuation); _ASSERTE(!_ImplBase->_IsCanceled()); return _ImplBase->_ScheduleContinuationTask(_PTaskHandle); } // If the handle is not scheduled, we need to manually delete it. delete _PTaskHandle; } // Schedule a continuation to run void _ScheduleContinuationTask(_ContinuationTaskHandleBase* _PTaskHandle) { _M_taskEventLogger._LogScheduleTask(true); // Ensure that the continuation runs in proper context (this might be on a Concurrency Runtime thread or in a // different Windows Runtime apartment) if (_PTaskHandle->_M_continuationContext._HasCapturedContext()) { // For those continuations need to be scheduled inside captured context, we will try to apply automatic // inlining to their inline modes, if they haven't been specified as _ForceInline yet. This change will // encourage those continuations to be executed inline so that reduce the cost of marshaling. For normal // continuations we won't do any change here, and their inline policies are completely decided by ._ThenImpl // method. if (_PTaskHandle->_M_inliningMode != details::_ForceInline) { _PTaskHandle->_M_inliningMode = details::_DefaultAutoInline; } _ScheduleFuncWithAutoInline( [_PTaskHandle]() { // Note that we cannot directly capture "this" pointer, instead, we should use _TaskImplPtr, a // shared_ptr to the _Task_impl_base. Because "this" pointer will be invalid as soon as _PTaskHandle // get deleted. _PTaskHandle will be deleted after being scheduled. auto _TaskImplPtr = _PTaskHandle->_GetTaskImplBase(); if (details::_ContextCallback::_CaptureCurrent() == _PTaskHandle->_M_continuationContext) { _TaskImplPtr->_ScheduleTask(_PTaskHandle, details::_ForceInline); } else { // // It's entirely possible that the attempt to marshal the call into a differing context will // fail. In this case, we need to handle the exception and mark the continuation as canceled // with the appropriate exception. There is one slight hitch to this: // // NOTE: COM's legacy behavior is to swallow SEH exceptions and marshal them back as HRESULTS. // This will in effect turn an SEH into a C++ exception that gets tagged on the task. One // unfortunate result of this is that various pieces of the task infrastructure will not be in a // valid state after this in /EHsc (due to the lack of destructors running, etc...). // try { // Dev10 compiler needs this! auto _PTaskHandle1 = _PTaskHandle; _PTaskHandle->_M_continuationContext._CallInContext([_PTaskHandle1, _TaskImplPtr]() { _TaskImplPtr->_ScheduleTask(_PTaskHandle1, details::_ForceInline); }); } #if defined(__cplusplus_winrt) catch (::Platform::Exception ^ _E) { _TaskImplPtr->_CancelWithException(_E); } #endif /* defined (__cplusplus_winrt) */ catch (...) { _TaskImplPtr->_CancelWithException(std::current_exception()); } } }, _PTaskHandle->_M_inliningMode); } else { _ScheduleTask(_PTaskHandle, _PTaskHandle->_M_inliningMode); } } /// /// Schedule the actual continuation. This will either schedule the function on the continuation task's /// implementation if the task has completed or append it to a list of functions to execute when the task /// actually does complete. /// /// /// The input type of the task. /// /// /// The output type of the task. /// /**/ void _ScheduleContinuation(_ContinuationTaskHandleBase* _PTaskHandle) { enum { _Nothing, _Schedule, _Cancel, _CancelWithException } _Do = _Nothing; // If the task has canceled, cancel the continuation. If the task has completed, execute the continuation right // away. Otherwise, add it to the list of pending continuations { ::pplx::extensibility::scoped_critical_section_t _LockHolder(_M_ContinuationsCritSec); if (_IsCompleted() || (_IsCanceled() && _PTaskHandle->_M_isTaskBasedContinuation)) { _Do = _Schedule; } else if (_IsCanceled()) { if (_HasUserException()) { _Do = _CancelWithException; } else { _Do = _Cancel; } } else { // chain itself on the continuation chain. _PTaskHandle->_M_next = _M_Continuations; _M_Continuations = _PTaskHandle; } } // Cancellation and execution of continuations should be performed after releasing the lock. Continuations off // of async tasks may execute inline. switch (_Do) { case _Schedule: { _PTaskHandle->_GetTaskImplBase()->_ScheduleContinuationTask(_PTaskHandle); break; } case _Cancel: { // If the ancestor was canceled, then your own execution should be canceled. // This traverses down the tree to cancel it. _PTaskHandle->_GetTaskImplBase()->_Cancel(true); delete _PTaskHandle; break; } case _CancelWithException: { // If the ancestor encountered an exception, transfer the exception to the continuation // This traverses down the tree to propagate the exception. _PTaskHandle->_GetTaskImplBase()->_CancelWithExceptionHolder(_GetExceptionHolder(), true); delete _PTaskHandle; break; } case _Nothing: default: // In this case, we have inserted continuation to continuation chain, // nothing more need to be done, just leave. break; } } void _RunTaskContinuations() { // The link list can no longer be modified at this point, // since all following up continuations will be scheduled by themselves. _ContinuationList _Cur = _M_Continuations, _Next; _M_Continuations = nullptr; while (_Cur) { // Current node might be deleted after running, // so we must fetch the next first. _Next = _Cur->_M_next; _RunContinuation(_Cur); _Cur = _Next; } } #if defined(__cplusplus_winrt) static bool _IsNonBlockingThread() { APTTYPE _AptType; APTTYPEQUALIFIER _AptTypeQualifier; HRESULT hr = CoGetApartmentType(&_AptType, &_AptTypeQualifier); // // If it failed, it's not a Windows Runtime/COM initialized thread. This is not a failure. // if (SUCCEEDED(hr)) { switch (_AptType) { case APTTYPE_STA: case APTTYPE_MAINSTA: return true; break; case APTTYPE_NA: switch (_AptTypeQualifier) { // A thread executing in a neutral apartment is either STA or MTA. To find out if this thread is // allowed to wait, we check the app qualifier. If it is an STA thread executing in a neutral // apartment, waiting is illegal, because the thread is responsible for pumping messages and // waiting on a task could take the thread out of circulation for a while. case APTTYPEQUALIFIER_NA_ON_STA: case APTTYPEQUALIFIER_NA_ON_MAINSTA: return true; break; } break; } } #if _UITHREADCTXT_SUPPORT // This method is used to throw an exception in _Wait() if called within STA. We // want the same behavior if _Wait is called on the UI thread. if (SUCCEEDED(CaptureUiThreadContext(nullptr))) { return true; } #endif /* _UITHREADCTXT_SUPPORT */ return false; } template static void _AsyncInit( const typename _Task_ptr<_ReturnType>::_Type& _OuterTask, Windows::Foundation::IAsyncOperation::_Value> ^ _AsyncOp) { // This method is invoked either when a task is created from an existing async operation or // when a lambda that creates an async operation executes. // If the outer task is pending cancel, cancel the async operation before setting the completed handler. The COM // reference on the IAsyncInfo object will be released when all ^references to the operation go out of scope. // This assertion uses the existence of taskcollection to determine if the task was created from an event. // That is no longer valid as even tasks created from a user lambda could have no underlying taskcollection // when a custom scheduler is used. // _ASSERTE((!_OuterTask->_M_TaskCollection._IsCreated() || _OuterTask->_M_fUnwrappedTask) && // !_OuterTask->_IsCanceled()); // Pass the shared_ptr by value into the lambda instead of using 'this'. _AsyncOp->Completed = ref new Windows::Foundation::AsyncOperationCompletedHandler<_ReturnType>( [_OuterTask]( Windows::Foundation::IAsyncOperation::_Value> ^ _Operation, Windows::Foundation::AsyncStatus _Status) mutable { if (_Status == Windows::Foundation::AsyncStatus::Canceled) { _OuterTask->_Cancel(true); } else if (_Status == Windows::Foundation::AsyncStatus::Error) { _OuterTask->_CancelWithException( ::Platform::Exception::ReCreateException(static_cast(_Operation->ErrorCode.Value))); } else { _ASSERTE(_Status == Windows::Foundation::AsyncStatus::Completed); _OuterTask->_FinalizeAndRunContinuations(_Operation->GetResults()); } // Take away this shared pointers reference on the task instead of waiting for the delegate to be // released. It could be released on a different thread after a delay, and not releasing the reference // here could cause the tasks to hold on to resources longer than they should. As an example, without // this reset, writing to a file followed by reading from it using the Windows Runtime Async APIs causes // a sharing violation. Using const_cast is the workaround for failed mutable keywords const_cast<_Task_ptr<_ReturnType>::_Type&>(_OuterTask).reset(); }); _OuterTask->_SetUnwrappedAsyncOp(_AsyncOp); } #endif /* defined (__cplusplus_winrt) */ template static void _AsyncInit(const typename _Task_ptr<_ReturnType>::_Type& _OuterTask, const task<_InternalReturnType>& _UnwrappedTask) { _ASSERTE(_OuterTask->_M_fUnwrappedTask && !_OuterTask->_IsCanceled()); // // We must ensure that continuations off _OuterTask (especially exception handling ones) continue to function in // the presence of an exception flowing out of the inner task _UnwrappedTask. This requires an exception // handling continuation off the inner task which does the appropriate funneling to the outer one. We use _Then // instead of then to prevent the exception from being marked as observed by our internal continuation. This // continuation must be scheduled regardless of whether or not the _OuterTask task is canceled. // _UnwrappedTask._Then( [_OuterTask](task<_InternalReturnType> _AncestorTask) { if (_AncestorTask._GetImpl()->_IsCompleted()) { _OuterTask->_FinalizeAndRunContinuations(_AncestorTask._GetImpl()->_GetResult()); } else { _ASSERTE(_AncestorTask._GetImpl()->_IsCanceled()); if (_AncestorTask._GetImpl()->_HasUserException()) { // Set _PropagatedFromAncestor to false, since _AncestorTask is not an ancestor of // _UnwrappedTask. Instead, it is the enclosing task. _OuterTask->_CancelWithExceptionHolder(_AncestorTask._GetImpl()->_GetExceptionHolder(), false); } else { _OuterTask->_Cancel(true); } } }, nullptr, details::_DefaultAutoInline); } scheduler_ptr _GetScheduler() const { return _M_TaskCollection._GetScheduler(); } // Tracks the internal state of the task std::atomic<_TaskInternalState> _M_TaskState; // Set to true either if the ancestor task had the flag set to true, or if the lambda that does the work of this // task returns an async operation or async action that is unwrapped by the runtime. bool _M_fFromAsync; // Set to true when a continuation unwraps a task or async operation. bool _M_fUnwrappedTask; // An exception thrown by the task body is captured in an exception holder and it is shared with all value based // continuations rooted at the task. The exception is 'observed' if the user invokes get()/wait() on any of the // tasks that are sharing this exception holder. If the exception is not observed by the time the internal object // owned by the shared pointer destructs, the process will fail fast. std::shared_ptr<_ExceptionHolder> _M_exceptionHolder; ::pplx::extensibility::critical_section_t _M_ContinuationsCritSec; // The cancellation token state. _CancellationTokenState* _M_pTokenState; // The registration on the token. _CancellationTokenRegistration* _M_pRegistration; typedef _ContinuationTaskHandleBase* _ContinuationList; _ContinuationList _M_Continuations; // The async task collection wrapper ::pplx::details::_TaskCollection_t _M_TaskCollection; // Callstack for function call (constructor or .then) that created this task impl. _TaskCreationCallstack _M_pTaskCreationCallstack; _TaskEventLogger _M_taskEventLogger; private: // Must not be copied by value: _Task_impl_base(const _Task_impl_base&); _Task_impl_base const& operator=(_Task_impl_base const&); }; #if PPLX_TASK_ASYNC_LOGGING inline void _TaskEventLogger::_LogTaskCompleted() { if (_M_scheduled) { ::Windows::Foundation::AsyncStatus _State; if (_M_task->_IsCompleted()) _State = ::Windows::Foundation::AsyncStatus::Completed; else if (_M_task->_HasUserException()) _State = ::Windows::Foundation::AsyncStatus::Error; else _State = ::Windows::Foundation::AsyncStatus::Canceled; if (details::_IsCausalitySupported()) { ::Windows::Foundation::Diagnostics::AsyncCausalityTracer::TraceOperationCompletion( ::Windows::Foundation::Diagnostics::CausalityTraceLevel::Required, ::Windows::Foundation::Diagnostics::CausalitySource::Library, _PPLTaskCausalityPlatformID, reinterpret_cast(_M_task), _State); } } } #endif /// /// The implementation of a first-class task. This structure contains the task group used to execute /// the task function and handles the scheduling. The _Task_impl is created as a shared_ptr /// member of the the public task class, so its destruction is handled automatically. /// /// /// The result type of this task. /// /**/ template struct _Task_impl : public _Task_impl_base { #if defined(__cplusplus_winrt) typedef Windows::Foundation::IAsyncOperation::_Value> _AsyncOperationType; #endif // defined(__cplusplus_winrt) _Task_impl(_CancellationTokenState* _Ct, scheduler_ptr _Scheduler_arg) : _Task_impl_base(_Ct, _Scheduler_arg) { #if defined(__cplusplus_winrt) _M_unwrapped_async_op = nullptr; #endif /* defined (__cplusplus_winrt) */ } virtual ~_Task_impl() { // We must invoke _DeregisterCancellation in the derived class destructor. Calling it in the base class // destructor could cause a partially initialized _Task_impl to be in the list of registrations for a // cancellation token. _DeregisterCancellation(); } virtual bool _CancelAndRunContinuations(bool _SynchronousCancel, bool _UserException, bool _PropagatedFromAncestor, const std::shared_ptr<_ExceptionHolder>& _ExceptionHolder_arg) { bool _RunContinuations = false; { ::pplx::extensibility::scoped_critical_section_t _LockHolder(_M_ContinuationsCritSec); if (_UserException) { _ASSERTE(_SynchronousCancel && !_IsCompleted()); // If the state is _Canceled, the exception has to be coming from an ancestor. _ASSERTE(!_IsCanceled() || _PropagatedFromAncestor); // We should not be canceled with an exception more than once. _ASSERTE(!_HasUserException()); // Mark _PropagatedFromAncestor as used. (void)_PropagatedFromAncestor; if (_M_TaskState == _Canceled) { // If the task has finished canceling there should not be any continuation records in the array. return false; } else { _ASSERTE(_M_TaskState != _Completed); _M_exceptionHolder = _ExceptionHolder_arg; } } else { // Completed is a non-cancellable state, and if this is an asynchronous cancel, we're unable to do // better than the last async cancel which is to say, cancellation is already initiated, so return // early. if (_IsCompleted() || _IsCanceled() || (_IsPendingCancel() && !_SynchronousCancel)) { _ASSERTE(!_IsCompleted() || !_HasUserException()); return false; } _ASSERTE(!_SynchronousCancel || !_HasUserException()); } if (_SynchronousCancel) { // Be aware that this set must be done BEFORE _M_Scheduled being set, or race will happen between this // and wait() _M_TaskState = _Canceled; // Cancellation completes the task, so all dependent tasks must be run to cancel them // They are canceled when they begin running (see _RunContinuation) and see that their // ancestor has been canceled. _RunContinuations = true; } else { _ASSERTE(!_UserException); if (_IsStarted()) { #if defined(__cplusplus_winrt) if (_M_unwrapped_async_op != nullptr) { // We will only try to cancel async operation but not unwrapped tasks, since unwrapped tasks // cannot be canceled without its token. _M_unwrapped_async_op->Cancel(); } #endif /* defined (__cplusplus_winrt) */ _M_TaskCollection._Cancel(); } // The _M_TaskState variable transitions to _Canceled when cancellation is completed (the task is not // executing user code anymore). In the case of a synchronous cancel, this can happen immediately, // whereas with an asynchronous cancel, the task has to move from _Started to _PendingCancel before it // can move to _Canceled when it is finished executing. _M_TaskState = _PendingCancel; _M_taskEventLogger._LogCancelTask(); } } // Only execute continuations and mark the task as completed if we were able to move the task to the _Canceled // state. if (_RunContinuations) { _M_TaskCollection._Complete(); if (_M_Continuations) { // Scheduling cancellation with automatic inlining. _ScheduleFuncWithAutoInline([=]() { _RunTaskContinuations(); }, details::_DefaultAutoInline); } } return true; } void _FinalizeAndRunContinuations(_ReturnType _Result) { _M_Result.Set(_Result); { // // Hold this lock to ensure continuations being concurrently either get added // to the _M_Continuations vector or wait for the result // ::pplx::extensibility::scoped_critical_section_t _LockHolder(_M_ContinuationsCritSec); // A task could still be in the _Created state if it was created with a task_completion_event. // It could also be in the _Canceled state for the same reason. _ASSERTE(!_HasUserException() && !_IsCompleted()); if (_IsCanceled()) { return; } // Always transition to "completed" state, even in the face of unacknowledged pending cancellation _M_TaskState = _Completed; } _M_TaskCollection._Complete(); _RunTaskContinuations(); } // // This method is invoked when the starts executing. The task returns early if this method returns true. // bool _TransitionedToStarted() { ::pplx::extensibility::scoped_critical_section_t _LockHolder(_M_ContinuationsCritSec); // Canceled state could only result from antecedent task's canceled state, but that code path will not reach // here. _ASSERTE(!_IsCanceled()); if (_IsPendingCancel()) return false; _ASSERTE(_IsCreated()); _M_TaskState = _Started; return true; } #if defined(__cplusplus_winrt) void _SetUnwrappedAsyncOp(_AsyncOperationType ^ _AsyncOp) { ::pplx::extensibility::scoped_critical_section_t _LockHolder(_M_ContinuationsCritSec); // Cancel the async operation if the task itself is canceled, since the thread that canceled the task missed it. if (_IsPendingCancel()) { _ASSERTE(!_IsCanceled()); _AsyncOp->Cancel(); } else { _M_unwrapped_async_op = _AsyncOp; } } #endif /* defined (__cplusplus_winrt) */ // Return true if the task has reached a terminal state bool _IsDone() { return _IsCompleted() || _IsCanceled(); } _ReturnType _GetResult() { return _M_Result.Get(); } _ResultHolder<_ReturnType> _M_Result; // this means that the result type must have a public default ctor. #if defined(__cplusplus_winrt) _AsyncOperationType ^ _M_unwrapped_async_op; #endif /* defined (__cplusplus_winrt) */ }; template struct _Task_completion_event_impl { private: _Task_completion_event_impl(const _Task_completion_event_impl&); _Task_completion_event_impl& operator=(const _Task_completion_event_impl&); public: typedef std::vector::_Type> _TaskList; _Task_completion_event_impl() : _M_fHasValue(false), _M_fIsCanceled(false) {} bool _HasUserException() { return _M_exceptionHolder != nullptr; } ~_Task_completion_event_impl() { for (auto _TaskIt = _M_tasks.begin(); _TaskIt != _M_tasks.end(); ++_TaskIt) { _ASSERTE(!_M_fHasValue && !_M_fIsCanceled); // Cancel the tasks since the event was never signaled or canceled. (*_TaskIt)->_Cancel(true); } } // We need to protect the loop over the array, so concurrent_vector would not have helped _TaskList _M_tasks; ::pplx::extensibility::critical_section_t _M_taskListCritSec; _ResultHolder<_ResultType> _M_value; std::shared_ptr<_ExceptionHolder> _M_exceptionHolder; std::atomic _M_fHasValue; std::atomic _M_fIsCanceled; }; // Utility method for dealing with void functions inline std::function<_Unit_type(void)> _MakeVoidToUnitFunc(const std::function& _Func) { return [=]() -> _Unit_type { _Func(); return _Unit_type(); }; } template std::function<_Type(_Unit_type)> _MakeUnitToTFunc(const std::function<_Type(void)>& _Func) { return [=](_Unit_type) -> _Type { return _Func(); }; } template std::function<_Unit_type(_Type)> _MakeTToUnitFunc(const std::function& _Func) { return [=](_Type t) -> _Unit_type { _Func(t); return _Unit_type(); }; } inline std::function<_Unit_type(_Unit_type)> _MakeUnitToUnitFunc(const std::function& _Func) { return [=](_Unit_type) -> _Unit_type { _Func(); return _Unit_type(); }; } } // namespace details /// /// The task_completion_event class allows you to delay the execution of a task until a condition is /// satisfied, or start a task in response to an external event. /// /// /// The result type of this task_completion_event class. /// /// /// Use a task created from a task completion event when your scenario requires you to create a task that will /// complete, and thereby have its continuations scheduled for execution, at some point in the future. The /// task_completion_event must have the same type as the task you create, and calling the set method on the /// task completion event with a value of that type will cause the associated task to complete, and provide that /// value as a result to its continuations. If the task completion event is never signaled, any tasks created /// from it will be canceled when it is destructed. task_completion_event behaves like a smart /// pointer, and should be passed by value. /// /// /**/ template class task_completion_event { public: /// /// Constructs a task_completion_event object. /// /**/ task_completion_event() : _M_Impl(std::make_shared>()) {} /// /// Sets the task completion event. /// /// /// The result to set this event with. /// /// /// The method returns true if it was successful in setting the event. It returns false if the /// event is already set. /// /// /// In the presence of multiple or concurrent calls to set, only the first call will succeed and its /// result (if any) will be stored in the task completion event. The remaining sets are ignored and the method /// will return false. When you set a task completion event, all the tasks created from that event will /// immediately complete, and its continuations, if any, will be scheduled. Task completion objects that have a /// other than void will pass the value to /// their continuations. /// /**/ bool set(_ResultType _Result) const // 'const' (even though it's not deep) allows to safely pass events by value into lambdas { // Subsequent sets are ignored. This makes races to set benign: the first setter wins and all others are // ignored. if (_IsTriggered()) { return false; } _TaskList _Tasks; bool _RunContinuations = false; { ::pplx::extensibility::scoped_critical_section_t _LockHolder(_M_Impl->_M_taskListCritSec); if (!_IsTriggered()) { _M_Impl->_M_value.Set(_Result); _M_Impl->_M_fHasValue = true; _Tasks.swap(_M_Impl->_M_tasks); _RunContinuations = true; } } if (_RunContinuations) { for (auto _TaskIt = _Tasks.begin(); _TaskIt != _Tasks.end(); ++_TaskIt) { // If current task was canceled by a cancellation_token, it would be in cancel pending state. if ((*_TaskIt)->_IsPendingCancel()) (*_TaskIt)->_Cancel(true); else { // Tasks created with task_completion_events can be marked as async, (we do this in when_any and // when_all if one of the tasks involved is an async task). Since continuations of async tasks can // execute inline, we need to run continuations after the lock is released. (*_TaskIt)->_FinalizeAndRunContinuations(_M_Impl->_M_value.Get()); } } if (_M_Impl->_HasUserException()) { _M_Impl->_M_exceptionHolder.reset(); } return true; } return false; } template __declspec(noinline) // Ask for no inlining so that the _ReturnAddress intrinsic gives us the expected result bool set_exception( _E _Except) const // 'const' (even though it's not deep) allows to safely pass events by value into lambdas { // It is important that PPLX_CAPTURE_CALLSTACK() evaluate to the instruction after the call instruction for // set_exception. return _Cancel(std::make_exception_ptr(_Except), PPLX_CAPTURE_CALLSTACK()); } /// /// Propagates an exception to all tasks associated with this event. /// /// /// The exception_ptr that indicates the exception to set this event with. /// /**/ __declspec(noinline) // Ask for no inlining so that the PPLX_CAPTURE_CALLSTACK gives us the expected result bool set_exception(std::exception_ptr _ExceptionPtr) const // 'const' (even though it's not deep) allows to safely pass events by value into lambdas { // It is important that PPLX_CAPTURE_CALLSTACK() evaluate to the instruction after the call instruction for // set_exception. return _Cancel(_ExceptionPtr, PPLX_CAPTURE_CALLSTACK()); } /// /// Internal method to cancel the task_completion_event. Any task created using this event will be marked as /// canceled if it has not already been set. /// bool _Cancel() const { // Cancel with the stored exception if one exists. return _CancelInternal(); } /// /// Internal method to cancel the task_completion_event with the exception provided. Any task created using this /// event will be canceled with the same exception. /// template bool _Cancel( _ExHolderType _ExHolder, const details::_TaskCreationCallstack& _SetExceptionAddressHint = details::_TaskCreationCallstack()) const { bool _Canceled; if (_StoreException(_ExHolder, _SetExceptionAddressHint)) { _Canceled = _CancelInternal(); _ASSERTE(_Canceled); } else { _Canceled = false; } return _Canceled; } /// /// Internal method that stores an exception in the task completion event. This is used internally by when_any. /// Note, this does not cancel the task completion event. A task completion event with a stored exception /// can bet set() successfully. If it is canceled, it will cancel with the stored exception, if one is present. /// template bool _StoreException( _ExHolderType _ExHolder, const details::_TaskCreationCallstack& _SetExceptionAddressHint = details::_TaskCreationCallstack()) const { ::pplx::extensibility::scoped_critical_section_t _LockHolder(_M_Impl->_M_taskListCritSec); if (!_IsTriggered() && !_M_Impl->_HasUserException()) { // Create the exception holder only if we have ensured there we will be successful in setting it onto the // task completion event. Failing to do so will result in an unobserved task exception. _M_Impl->_M_exceptionHolder = _ToExceptionHolder(_ExHolder, _SetExceptionAddressHint); return true; } return false; } /// /// Tests whether current event has been either Set, or Canceled. /// bool _IsTriggered() const { return _M_Impl->_M_fHasValue || _M_Impl->_M_fIsCanceled; } private: static std::shared_ptr _ToExceptionHolder( const std::shared_ptr& _ExHolder, const details::_TaskCreationCallstack&) { return _ExHolder; } static std::shared_ptr _ToExceptionHolder( std::exception_ptr _ExceptionPtr, const details::_TaskCreationCallstack& _SetExceptionAddressHint) { return std::make_shared(_ExceptionPtr, _SetExceptionAddressHint); } template friend class task; // task can register itself with the event by calling the private _RegisterTask template friend class task_completion_event; typedef typename details::_Task_completion_event_impl<_ResultType>::_TaskList _TaskList; /// /// Cancels the task_completion_event. /// bool _CancelInternal() const { // Cancellation of task completion events is an internal only utility. Our usage is such that _CancelInternal // will never be invoked if the task completion event has been set. _ASSERTE(!_M_Impl->_M_fHasValue); if (_M_Impl->_M_fIsCanceled) { return false; } _TaskList _Tasks; bool _Cancel = false; { ::pplx::extensibility::scoped_critical_section_t _LockHolder(_M_Impl->_M_taskListCritSec); _ASSERTE(!_M_Impl->_M_fHasValue); if (!_M_Impl->_M_fIsCanceled) { _M_Impl->_M_fIsCanceled = true; _Tasks.swap(_M_Impl->_M_tasks); _Cancel = true; } } bool _UserException = _M_Impl->_HasUserException(); if (_Cancel) { for (auto _TaskIt = _Tasks.begin(); _TaskIt != _Tasks.end(); ++_TaskIt) { // Need to call this after the lock is released. See comments in set(). if (_UserException) { (*_TaskIt)->_CancelWithExceptionHolder(_M_Impl->_M_exceptionHolder, true); } else { (*_TaskIt)->_Cancel(true); } } } return _Cancel; } /// /// Register a task with this event. This function is called when a task is constructed using /// a task_completion_event. /// void _RegisterTask(const typename details::_Task_ptr<_ResultType>::_Type& _TaskParam) { ::pplx::extensibility::scoped_critical_section_t _LockHolder(_M_Impl->_M_taskListCritSec); // If an exception was already set on this event, then cancel the task with the stored exception. if (_M_Impl->_HasUserException()) { _TaskParam->_CancelWithExceptionHolder(_M_Impl->_M_exceptionHolder, true); } else if (_M_Impl->_M_fHasValue) { _TaskParam->_FinalizeAndRunContinuations(_M_Impl->_M_value.Get()); } else { _M_Impl->_M_tasks.push_back(_TaskParam); } } std::shared_ptr> _M_Impl; }; /// /// The task_completion_event class allows you to delay the execution of a task until a condition is /// satisfied, or start a task in response to an external event. /// /// /// Use a task created from a task completion event when your scenario requires you to create a task that will /// complete, and thereby have its continuations scheduled for execution, at some point in the future. The /// task_completion_event must have the same type as the task you create, and calling the set method on the /// task completion event with a value of that type will cause the associated task to complete, and provide that /// value as a result to its continuations. If the task completion event is never signaled, any tasks created /// from it will be canceled when it is destructed. task_completion_event behaves like a smart /// pointer, and should be passed by value. /// /// /**/ template<> class task_completion_event { public: /// /// Sets the task completion event. /// /// /// The method returns true if it was successful in setting the event. It returns false if the /// event is already set. /// /// /// In the presence of multiple or concurrent calls to set, only the first call will succeed and its /// result (if any) will be stored in the task completion event. The remaining sets are ignored and the method /// will return false. When you set a task completion event, all the tasks created from that event will /// immediately complete, and its continuations, if any, will be scheduled. Task completion objects that have a /// other than void will pass the value to /// their continuations. /// /**/ bool set() const // 'const' (even though it's not deep) allows to safely pass events by value into lambdas { return _M_unitEvent.set(details::_Unit_type()); } template __declspec(noinline) // Ask for no inlining so that the _ReturnAddress intrinsic gives us the expected result bool set_exception( _E _Except) const // 'const' (even though it's not deep) allows to safely pass events by value into lambdas { return _M_unitEvent._Cancel(std::make_exception_ptr(_Except), PPLX_CAPTURE_CALLSTACK()); } /// /// Propagates an exception to all tasks associated with this event. /// /// /// The exception_ptr that indicates the exception to set this event with. /// /**/ __declspec( noinline) // Ask for no inlining so that the PPLX_CAPTURE_CALLSTACK intrinsic gives us the expected result bool set_exception(std::exception_ptr _ExceptionPtr) const // 'const' (even though it's not deep) allows to safely pass events by value into lambdas { // It is important that PPLX_CAPTURE_CALLSTACK() evaluate to the instruction after the call instruction for // set_exception. return _M_unitEvent._Cancel(_ExceptionPtr, PPLX_CAPTURE_CALLSTACK()); } /// /// Cancel the task_completion_event. Any task created using this event will be marked as canceled if it has /// not already been set. /// void _Cancel() const // 'const' (even though it's not deep) allows to safely pass events by value into lambdas { _M_unitEvent._Cancel(); } /// /// Cancel the task_completion_event with the exception holder provided. Any task created using this event will /// be canceled with the same exception. /// void _Cancel(const std::shared_ptr& _ExHolder) const { _M_unitEvent._Cancel(_ExHolder); } /// /// Method that stores an exception in the task completion event. This is used internally by when_any. /// Note, this does not cancel the task completion event. A task completion event with a stored exception /// can bet set() successfully. If it is canceled, it will cancel with the stored exception, if one is present. /// bool _StoreException(const std::shared_ptr& _ExHolder) const { return _M_unitEvent._StoreException(_ExHolder); } /// /// Test whether current event has been either Set, or Canceled. /// bool _IsTriggered() const { return _M_unitEvent._IsTriggered(); } private: template friend class task; // task can register itself with the event by calling the private _RegisterTask /// /// Register a task with this event. This function is called when a task is constructed using /// a task_completion_event. /// void _RegisterTask(details::_Task_ptr::_Type _TaskParam) { _M_unitEvent._RegisterTask(_TaskParam); } // The void event contains an event a dummy type so common code can be used for events with void and non-void // results. task_completion_event _M_unitEvent; }; namespace details { // // Compile-time validation helpers // // Task constructor validation: issue helpful diagnostics for common user errors. Do not attempt full validation here. // // Anything callable is fine template auto _IsValidTaskCtor(_Ty _Param, int, int, int, int) -> decltype(_Param(), std::true_type()); #if defined(__cplusplus_winrt) // Anything that has GetResults is fine: this covers all async operations template auto _IsValidTaskCtor(_Ty _Param, int, int, int, ...) -> decltype(_Param->GetResults(), std::true_type()); #endif // Allow parameters with set: this covers task_completion_event template auto _IsValidTaskCtor(_Ty _Param, int, int, ...) -> decltype(_Param.set(stdx::declval<_ReturnType>()), std::true_type()); template auto _IsValidTaskCtor(_Ty _Param, int, ...) -> decltype(_Param.set(), std::true_type()); // All else is invalid template std::false_type _IsValidTaskCtor(_Ty _Param, ...); template void _ValidateTaskConstructorArgs(_Ty _Param) { static_assert(std::is_same(_Param, 0, 0, 0, 0)), std::true_type>::value, #if defined(__cplusplus_winrt) "incorrect argument for task constructor; can be a callable object, an asynchronous operation, or a " "task_completion_event" #else /* defined (__cplusplus_winrt) */ "incorrect argument for task constructor; can be a callable object or a task_completion_event" #endif /* defined (__cplusplus_winrt) */ ); #if defined(__cplusplus_winrt) static_assert(!(std::is_same<_Ty, _ReturnType>::value && details::_IsIAsyncInfo<_Ty>::_Value), "incorrect template argument for task; consider using the return type of the async operation"); #endif /* defined (__cplusplus_winrt) */ } #if defined(__cplusplus_winrt) // Helpers for create_async validation // // A parameter lambda taking no arguments is valid template static auto _IsValidCreateAsync(_Ty _Param, int, int, int, int) -> decltype(_Param(), std::true_type()); // A parameter lambda taking an cancellation_token argument is valid template static auto _IsValidCreateAsync(_Ty _Param, int, int, int, ...) -> decltype(_Param(cancellation_token::none()), std::true_type()); // A parameter lambda taking a progress report argument is valid template static auto _IsValidCreateAsync(_Ty _Param, int, int, ...) -> decltype(_Param(details::_ProgressReporterCtorArgType()), std::true_type()); // A parameter lambda taking a progress report and a cancellation_token argument is valid template static auto _IsValidCreateAsync(_Ty _Param, int, ...) -> decltype(_Param(details::_ProgressReporterCtorArgType(), cancellation_token::none()), std::true_type()); // All else is invalid template static std::false_type _IsValidCreateAsync(_Ty _Param, ...); #endif /* defined (__cplusplus_winrt) */ /// /// A helper class template that makes only movable functions be able to be passed to std::function /// template struct _NonCopyableFunctorWrapper { template, typename std::decay<_Tx>::type>::value>::type> explicit _NonCopyableFunctorWrapper(_Tx&& f) : _M_functor {std::make_shared<_Ty>(std::forward<_Tx>(f))} { } template auto operator()(_Args&&... args) -> decltype(std::declval<_Ty>()(std::forward<_Args>(args)...)) { return _M_functor->operator()(std::forward<_Args>(args)...); } template auto operator()(_Args&&... args) const -> decltype(std::declval<_Ty>()(std::forward<_Args>(args)...)) { return _M_functor->operator()(std::forward<_Args>(args)...); } std::shared_ptr<_Ty> _M_functor; }; template struct _CopyableFunctor { typedef _Ty _Type; }; template struct _CopyableFunctor< _Ty, typename std::enable_if::value && !std::is_copy_constructible<_Ty>::value>::type> { typedef _NonCopyableFunctorWrapper<_Ty> _Type; }; } // namespace details /// /// A helper class template that transforms a continuation lambda that either takes or returns void, or both, into a /// lambda that takes and returns a non-void type (details::_Unit_type is used to substitute for void). This is to /// minimize the special handling required for 'void'. /// template class _Continuation_func_transformer { public: static auto _Perform(std::function<_OutType(_InpType)> _Func) -> decltype(_Func) { return _Func; } }; template class _Continuation_func_transformer { public: static auto _Perform(std::function<_OutType(void)> _Func) -> decltype(details::_MakeUnitToTFunc<_OutType>(_Func)) { return details::_MakeUnitToTFunc<_OutType>(_Func); } }; template class _Continuation_func_transformer<_InType, void> { public: static auto _Perform(std::function _Func) -> decltype(details::_MakeTToUnitFunc<_InType>(_Func)) { return details::_MakeTToUnitFunc<_InType>(_Func); } }; template<> class _Continuation_func_transformer { public: static auto _Perform(std::function _Func) -> decltype(details::_MakeUnitToUnitFunc(_Func)) { return details::_MakeUnitToUnitFunc(_Func); } }; // A helper class template that transforms an intial task lambda returns void into a lambda that returns a non-void type // (details::_Unit_type is used to substitute for void). This is to minimize the special handling required for 'void'. template class _Init_func_transformer { public: static auto _Perform(std::function<_RetType(void)> _Func) -> decltype(_Func) { return _Func; } }; template<> class _Init_func_transformer { public: static auto _Perform(std::function _Func) -> decltype(details::_MakeVoidToUnitFunc(_Func)) { return details::_MakeVoidToUnitFunc(_Func); } }; /// /// The Parallel Patterns Library (PPL) task class. A task object represents work that can be executed /// asynchronously, and concurrently with other tasks and parallel work produced by parallel algorithms in the /// Concurrency Runtime. It produces a result of type on successful completion. /// Tasks of type task<void> produce no result. A task can be waited upon and canceled independently of /// other tasks. It can also be composed with other tasks using continuations(then), and /// join(when_all) and choice(when_any) patterns. /// /// /// The result type of this task. /// /// /// For more information, see . /// /**/ template class task { public: /// /// The type of the result an object of this class produces. /// /**/ typedef _ReturnType result_type; /// /// Constructs a task object. /// /// /// The default constructor for a task is only present in order to allow tasks to be used within /// containers. A default constructed task cannot be used until you assign a valid task to it. Methods such as /// get, wait or then will throw an invalid_argument exception when called on a default constructed task. A task that is /// created from a task_completion_event will complete (and have its continuations scheduled) when the /// task completion event is set. The version of the constructor that takes a cancellation token /// creates a task that can be canceled using the cancellation_token_source the token was obtained from. /// Tasks created without a cancellation token are not cancelable. Tasks created from a /// Windows::Foundation::IAsyncInfo interface or a lambda that returns an IAsyncInfo interface /// reach their terminal state when the enclosed Windows Runtime asynchronous operation or action completes. /// Similarly, tasks created from a lambda that returns a task<result_type> reach their terminal /// state when the inner task reaches its terminal state, and not when the lambda returns. /// task behaves like a smart pointer and is safe to pass around by value. It can be accessed by /// multiple threads without the need for locks. The constructor overloads that take a /// Windows::Foundation::IAsyncInfo interface or a lambda returning such an interface, are only available to /// Windows Store apps. For more information, see . /// /**/ task() : _M_Impl(nullptr) { // The default constructor should create a task with a nullptr impl. This is a signal that the // task is not usable and should throw if any wait(), get() or then() APIs are used. } /// /// Constructs a task object. /// /// /// The type of the parameter from which the task is to be constructed. /// /// /// The parameter from which the task is to be constructed. This could be a lambda, a function object, a /// task_completion_event<result_type> object, or a Windows::Foundation::IAsyncInfo if you are /// using tasks in your Windows Store app. The lambda or function object should be a type equivalent to /// std::function<X(void)>, where X can be a variable of type result_type, /// task<result_type>, or a Windows::Foundation::IAsyncInfo in Windows Store apps. /// /// /// The cancellation token to associate with this task. A task created without a cancellation token cannot be /// canceled. It implicitly receives the token cancellation_token::none(). /// /// /// The default constructor for a task is only present in order to allow tasks to be used within /// containers. A default constructed task cannot be used until you assign a valid task to it. Methods such as /// get, wait or then will throw an invalid_argument exception when called on a default constructed task. A task that is /// created from a task_completion_event will complete (and have its continuations scheduled) when the /// task completion event is set. The version of the constructor that takes a cancellation token /// creates a task that can be canceled using the cancellation_token_source the token was obtained from. /// Tasks created without a cancellation token are not cancelable. Tasks created from a /// Windows::Foundation::IAsyncInfo interface or a lambda that returns an IAsyncInfo interface /// reach their terminal state when the enclosed Windows Runtime asynchronous operation or action completes. /// Similarly, tasks created from a lambda that returns a task<result_type> reach their terminal /// state when the inner task reaches its terminal state, and not when the lambda returns. /// task behaves like a smart pointer and is safe to pass around by value. It can be accessed by /// multiple threads without the need for locks. The constructor overloads that take a /// Windows::Foundation::IAsyncInfo interface or a lambda returning such an interface, are only available to /// Windows Store apps. For more information, see . /// /**/ template __declspec(noinline) // Ask for no inlining so that the PPLX_CAPTURE_CALLSTACK gives us the expected result explicit task(_Ty _Param) { task_options _TaskOptions; details::_ValidateTaskConstructorArgs<_ReturnType, _Ty>(_Param); _CreateImpl(_TaskOptions.get_cancellation_token()._GetImplValue(), _TaskOptions.get_scheduler()); // Do not move the next line out of this function. It is important that PPLX_CAPTURE_CALLSTACK() evaluate to the // the call site of the task constructor. _SetTaskCreationCallstack(PPLX_CAPTURE_CALLSTACK()); _TaskInitMaybeFunctor(_Param, details::_IsCallable(_Param, 0)); } /// /// Constructs a task object. /// /// /// The type of the parameter from which the task is to be constructed. /// /// /// The parameter from which the task is to be constructed. This could be a lambda, a function object, a /// task_completion_event<result_type> object, or a Windows::Foundation::IAsyncInfo if you are /// using tasks in your Windows Store app. The lambda or function object should be a type equivalent to /// std::function<X(void)>, where X can be a variable of type result_type, /// task<result_type>, or a Windows::Foundation::IAsyncInfo in Windows Store apps. /// /// /// The task options include cancellation token, scheduler etc /// /// /// The default constructor for a task is only present in order to allow tasks to be used within /// containers. A default constructed task cannot be used until you assign a valid task to it. Methods such as /// get, wait or then will throw an invalid_argument exception when called on a default constructed task. A task that is /// created from a task_completion_event will complete (and have its continuations scheduled) when the /// task completion event is set. The version of the constructor that takes a cancellation token /// creates a task that can be canceled using the cancellation_token_source the token was obtained from. /// Tasks created without a cancellation token are not cancelable. Tasks created from a /// Windows::Foundation::IAsyncInfo interface or a lambda that returns an IAsyncInfo interface /// reach their terminal state when the enclosed Windows Runtime asynchronous operation or action completes. /// Similarly, tasks created from a lambda that returns a task<result_type> reach their terminal /// state when the inner task reaches its terminal state, and not when the lambda returns. /// task behaves like a smart pointer and is safe to pass around by value. It can be accessed by /// multiple threads without the need for locks. The constructor overloads that take a /// Windows::Foundation::IAsyncInfo interface or a lambda returning such an interface, are only available to /// Windows Store apps. For more information, see . /// /**/ template __declspec(noinline) // Ask for no inlining so that the PPLX_CAPTURE_CALLSTACK gives us the expected result explicit task(_Ty _Param, const task_options& _TaskOptions) { details::_ValidateTaskConstructorArgs<_ReturnType, _Ty>(_Param); _CreateImpl(_TaskOptions.get_cancellation_token()._GetImplValue(), _TaskOptions.get_scheduler()); // Do not move the next line out of this function. It is important that PPLX_CAPTURE_CALLSTACK() evaluate to the // the call site of the task constructor. _SetTaskCreationCallstack(details::_get_internal_task_options(_TaskOptions)._M_hasPresetCreationCallstack ? details::_get_internal_task_options(_TaskOptions)._M_presetCreationCallstack : PPLX_CAPTURE_CALLSTACK()); _TaskInitMaybeFunctor(_Param, details::_IsCallable(_Param, 0)); } /// /// Constructs a task object. /// /// /// The source task object. /// /// /// The default constructor for a task is only present in order to allow tasks to be used within /// containers. A default constructed task cannot be used until you assign a valid task to it. Methods such as /// get, wait or then will throw an invalid_argument exception when called on a default constructed task. A task that is /// created from a task_completion_event will complete (and have its continuations scheduled) when the /// task completion event is set. The version of the constructor that takes a cancellation token /// creates a task that can be canceled using the cancellation_token_source the token was obtained from. /// Tasks created without a cancellation token are not cancelable. Tasks created from a /// Windows::Foundation::IAsyncInfo interface or a lambda that returns an IAsyncInfo interface /// reach their terminal state when the enclosed Windows Runtime asynchronous operation or action completes. /// Similarly, tasks created from a lambda that returns a task<result_type> reach their terminal /// state when the inner task reaches its terminal state, and not when the lambda returns. /// task behaves like a smart pointer and is safe to pass around by value. It can be accessed by /// multiple threads without the need for locks. The constructor overloads that take a /// Windows::Foundation::IAsyncInfo interface or a lambda returning such an interface, are only available to /// Windows Store apps. For more information, see . /// /**/ task(const task& _Other) : _M_Impl(_Other._M_Impl) {} /// /// Constructs a task object. /// /// /// The source task object. /// /// /// The default constructor for a task is only present in order to allow tasks to be used within /// containers. A default constructed task cannot be used until you assign a valid task to it. Methods such as /// get, wait or then will throw an invalid_argument exception when called on a default constructed task. A task that is /// created from a task_completion_event will complete (and have its continuations scheduled) when the /// task completion event is set. The version of the constructor that takes a cancellation token /// creates a task that can be canceled using the cancellation_token_source the token was obtained from. /// Tasks created without a cancellation token are not cancelable. Tasks created from a /// Windows::Foundation::IAsyncInfo interface or a lambda that returns an IAsyncInfo interface /// reach their terminal state when the enclosed Windows Runtime asynchronous operation or action completes. /// Similarly, tasks created from a lambda that returns a task<result_type> reach their terminal /// state when the inner task reaches its terminal state, and not when the lambda returns. /// task behaves like a smart pointer and is safe to pass around by value. It can be accessed by /// multiple threads without the need for locks. The constructor overloads that take a /// Windows::Foundation::IAsyncInfo interface or a lambda returning such an interface, are only available to /// Windows Store apps. For more information, see . /// /**/ task(task&& _Other) : _M_Impl(std::move(_Other._M_Impl)) {} /// /// Replaces the contents of one task object with another. /// /// /// The source task object. /// /// /// As task behaves like a smart pointer, after a copy assignment, this task objects represents /// the same actual task as does. /// /**/ task& operator=(const task& _Other) { if (this != &_Other) { _M_Impl = _Other._M_Impl; } return *this; } /// /// Replaces the contents of one task object with another. /// /// /// The source task object. /// /// /// As task behaves like a smart pointer, after a copy assignment, this task objects represents /// the same actual task as does. /// /**/ task& operator=(task&& _Other) { if (this != &_Other) { _M_Impl = std::move(_Other._M_Impl); } return *this; } /// /// Adds a continuation task to this task. /// /// /// The type of the function object that will be invoked by this task. /// /// /// The continuation function to execute when this task completes. This continuation function must take as input /// a variable of either result_type or task<result_type>, where result_type is the /// type of the result this task produces. /// /// /// The newly created continuation task. The result type of the returned task is determined by what returns. /// /// /// The overloads of then that take a lambda or functor that returns a Windows::Foundation::IAsyncInfo /// interface, are only available to Windows Store apps. For more information on how to use task /// continuations to compose asynchronous work, see . /// /**/ template __declspec(noinline) // Ask for no inlining so that the PPLX_CAPTURE_CALLSTACK gives us the expected result auto then(_Function&& _Func) const -> typename details::_ContinuationTypeTraits<_Function, _ReturnType>::_TaskOfType { task_options _TaskOptions; details::_get_internal_task_options(_TaskOptions)._set_creation_callstack(PPLX_CAPTURE_CALLSTACK()); return _ThenImpl<_ReturnType, _Function>(std::forward<_Function>(_Func), _TaskOptions); } /// /// Adds a continuation task to this task. /// /// /// The type of the function object that will be invoked by this task. /// /// /// The continuation function to execute when this task completes. This continuation function must take as input /// a variable of either result_type or task<result_type>, where result_type is the /// type of the result this task produces. /// /// /// The task options include cancellation token, scheduler and continuation context. By default the former 3 /// options are inherited from the antecedent task /// /// /// The newly created continuation task. The result type of the returned task is determined by what returns. /// /// /// The overloads of then that take a lambda or functor that returns a Windows::Foundation::IAsyncInfo /// interface, are only available to Windows Store apps. For more information on how to use task /// continuations to compose asynchronous work, see . /// /**/ template __declspec(noinline) // Ask for no inlining so that the PPLX_CAPTURE_CALLSTACK gives us the expected result auto then(_Function&& _Func, task_options _TaskOptions) const -> typename details::_ContinuationTypeTraits<_Function, _ReturnType>::_TaskOfType { details::_get_internal_task_options(_TaskOptions)._set_creation_callstack(PPLX_CAPTURE_CALLSTACK()); return _ThenImpl<_ReturnType, _Function>(std::forward<_Function>(_Func), _TaskOptions); } /// /// Adds a continuation task to this task. /// /// /// The type of the function object that will be invoked by this task. /// /// /// The continuation function to execute when this task completes. This continuation function must take as input /// a variable of either result_type or task<result_type>, where result_type is the /// type of the result this task produces. /// /// /// The cancellation token to associate with the continuation task. A continuation task that is created without /// a cancellation token will inherit the token of its antecedent task. /// /// /// A variable that specifies where the continuation should execute. This variable is only useful when used in a /// Windows Store style app. For more information, see task_continuation_context /// /// /// The newly created continuation task. The result type of the returned task is determined by what returns. /// /// /// The overloads of then that take a lambda or functor that returns a Windows::Foundation::IAsyncInfo /// interface, are only available to Windows Store apps. For more information on how to use task /// continuations to compose asynchronous work, see . /// /**/ template __declspec(noinline) // Ask for no inlining so that the PPLX_CAPTURE_CALLSTACK gives us the expected result auto then(_Function&& _Func, cancellation_token _CancellationToken, task_continuation_context _ContinuationContext) const -> typename details::_ContinuationTypeTraits<_Function, _ReturnType>::_TaskOfType { task_options _TaskOptions(_CancellationToken, _ContinuationContext); details::_get_internal_task_options(_TaskOptions)._set_creation_callstack(PPLX_CAPTURE_CALLSTACK()); return _ThenImpl<_ReturnType, _Function>(std::forward<_Function>(_Func), _TaskOptions); } /// /// Waits for this task to reach a terminal state. It is possible for wait to execute the task inline, if /// all of the tasks dependencies are satisfied, and it has not already been picked up for execution by a /// background worker. /// /// /// A task_status value which could be either completed or canceled. If the task /// encountered an exception during execution, or an exception was propagated to it from an antecedent task, /// wait will throw that exception. /// /**/ task_status wait() const { if (!_M_Impl) { throw invalid_operation("wait() cannot be called on a default constructed task."); } return _M_Impl->_Wait(); } /// /// Returns the result this task produced. If the task is not in a terminal state, a call to get will /// wait for the task to finish. This method does not return a value when called on a task with a /// result_type of void. /// /// /// The result of the task. /// /// /// If the task is canceled, a call to get will throw a task_canceled exception. If the task encountered an different exception or an exception was /// propagated to it from an antecedent task, a call to get will throw that exception. /// /**/ _ReturnType get() const { if (!_M_Impl) { throw invalid_operation("get() cannot be called on a default constructed task."); } if (_M_Impl->_Wait() == canceled) { throw task_canceled(); } return _M_Impl->_GetResult(); } /// /// Determines if the task is completed. /// /// /// True if the task has completed, false otherwise. /// /// /// The function returns true if the task is completed or canceled (with or without user exception). /// bool is_done() const { if (!_M_Impl) { throw invalid_operation("is_done() cannot be called on a default constructed task."); } return _M_Impl->_IsDone(); } /// /// Returns the scheduler for this task /// /// /// A pointer to the scheduler /// scheduler_ptr scheduler() const { if (!_M_Impl) { throw invalid_operation("scheduler() cannot be called on a default constructed task."); } return _M_Impl->_GetScheduler(); } /// /// Determines whether the task unwraps a Windows Runtime IAsyncInfo interface or is descended from such /// a task. /// /// /// true if the task unwraps an IAsyncInfo interface or is descended from such a task, /// false otherwise. /// /**/ bool is_apartment_aware() const { if (!_M_Impl) { throw invalid_operation("is_apartment_aware() cannot be called on a default constructed task."); } return _M_Impl->_IsApartmentAware(); } /// /// Determines whether two task objects represent the same internal task. /// /// /// true if the objects refer to the same underlying task, and false otherwise. /// /**/ bool operator==(const task<_ReturnType>& _Rhs) const { return (_M_Impl == _Rhs._M_Impl); } /// /// Determines whether two task objects represent different internal tasks. /// /// /// true if the objects refer to different underlying tasks, and false otherwise. /// /**/ bool operator!=(const task<_ReturnType>& _Rhs) const { return !operator==(_Rhs); } /// /// Create an underlying task implementation. /// void _CreateImpl(details::_CancellationTokenState* _Ct, scheduler_ptr _Scheduler) { _ASSERTE(_Ct != nullptr); _M_Impl = details::_Task_ptr<_ReturnType>::_Make(_Ct, _Scheduler); if (_Ct != details::_CancellationTokenState::_None()) { _M_Impl->_RegisterCancellation(_M_Impl); } } /// /// Return the underlying implementation for this task. /// const typename details::_Task_ptr<_ReturnType>::_Type& _GetImpl() const { return _M_Impl; } /// /// Set the implementation of the task to be the supplied implementation. /// void _SetImpl(const typename details::_Task_ptr<_ReturnType>::_Type& _Impl) { _ASSERTE(!_M_Impl); _M_Impl = _Impl; } /// /// Set the implementation of the task to be the supplied implementation using a move instead of a copy. /// void _SetImpl(typename details::_Task_ptr<_ReturnType>::_Type&& _Impl) { _ASSERTE(!_M_Impl); _M_Impl = std::move(_Impl); } /// /// Sets a property determining whether the task is apartment aware. /// void _SetAsync(bool _Async = true) { _GetImpl()->_SetAsync(_Async); } /// /// Sets a field in the task impl to the return callstack for calls to the task constructors and the then /// method. /// void _SetTaskCreationCallstack(const details::_TaskCreationCallstack& _callstack) { _GetImpl()->_SetTaskCreationCallstack(_callstack); } /// /// An internal version of then that takes additional flags and always execute the continuation inline by /// default. When _ForceInline is set to false, continuations inlining will be limited to default /// _DefaultAutoInline. This function is Used for runtime internal continuations only. /// template auto _Then(_Function&& _Func, details::_CancellationTokenState* _PTokenState, details::_TaskInliningMode_t _InliningMode = details::_ForceInline) const -> typename details::_ContinuationTypeTraits<_Function, _ReturnType>::_TaskOfType { // inherit from antecedent auto _Scheduler = _GetImpl()->_GetScheduler(); return _ThenImpl<_ReturnType, _Function>(std::forward<_Function>(_Func), _PTokenState, task_continuation_context::use_default(), _Scheduler, PPLX_CAPTURE_CALLSTACK(), _InliningMode); } private: template friend class task; // The task handle type used to construct an 'initial task' - a task with no dependents. template struct _InitialTaskHandle : details::_PPLTaskHandle<_ReturnType, _InitialTaskHandle<_InternalReturnType, _Function, _TypeSelection>, details::_UnrealizedChore_t> { _Function _M_function; _InitialTaskHandle(const typename details::_Task_ptr<_ReturnType>::_Type& _TaskImpl, const _Function& _func) : details::_PPLTaskHandle<_ReturnType, _InitialTaskHandle<_InternalReturnType, _Function, _TypeSelection>, details::_UnrealizedChore_t>::_PPLTaskHandle(_TaskImpl) , _M_function(_func) { } virtual ~_InitialTaskHandle() {} template auto _LogWorkItemAndInvokeUserLambda(_Func&& _func) const -> decltype(_func()) { details::_TaskWorkItemRAIILogger _LogWorkItem(this->_M_pTask->_M_taskEventLogger); CASABLANCA_UNREFERENCED_PARAMETER(_LogWorkItem); return _func(); } void _Perform() const { _Init(_TypeSelection()); } void _SyncCancelAndPropagateException() const { this->_M_pTask->_Cancel(true); } // // Overload 0: returns _InternalReturnType // // This is the most basic task with no unwrapping // void _Init(details::_TypeSelectorNoAsync) const { this->_M_pTask->_FinalizeAndRunContinuations( _LogWorkItemAndInvokeUserLambda(_Init_func_transformer<_InternalReturnType>::_Perform(_M_function))); } // // Overload 1: returns IAsyncOperation<_InternalReturnType>^ (only under /ZW) // or // returns task<_InternalReturnType> // // This is task whose functor returns an async operation or a task which will be unwrapped for continuation // Depending on the output type, the right _AsyncInit gets invoked // void _Init(details::_TypeSelectorAsyncOperationOrTask) const { details::_Task_impl_base::_AsyncInit<_ReturnType, _InternalReturnType>( this->_M_pTask, _LogWorkItemAndInvokeUserLambda(_M_function)); } #if defined(__cplusplus_winrt) // // Overload 2: returns IAsyncAction^ // // This is task whose functor returns an async action which will be unwrapped for continuation // void _Init(details::_TypeSelectorAsyncAction) const { details::_Task_impl_base::_AsyncInit<_ReturnType, _InternalReturnType>( this->_M_pTask, ref new details::_IAsyncActionToAsyncOperationConverter(_LogWorkItemAndInvokeUserLambda(_M_function))); } // // Overload 3: returns IAsyncOperationWithProgress<_InternalReturnType, _ProgressType>^ // // This is task whose functor returns an async operation with progress which will be unwrapped for continuation // void _Init(details::_TypeSelectorAsyncOperationWithProgress) const { typedef details::_GetProgressType::_Value _ProgressType; details::_Task_impl_base::_AsyncInit<_ReturnType, _InternalReturnType>( this->_M_pTask, ref new details::_IAsyncOperationWithProgressToAsyncOperationConverter<_InternalReturnType, _ProgressType>( _LogWorkItemAndInvokeUserLambda(_M_function))); } // // Overload 4: returns IAsyncActionWithProgress<_ProgressType>^ // // This is task whose functor returns an async action with progress which will be unwrapped for continuation // void _Init(details::_TypeSelectorAsyncActionWithProgress) const { typedef details::_GetProgressType::_Value _ProgressType; details::_Task_impl_base::_AsyncInit<_ReturnType, _InternalReturnType>( this->_M_pTask, ref new details::_IAsyncActionWithProgressToAsyncOperationConverter<_ProgressType>( _LogWorkItemAndInvokeUserLambda(_M_function))); } #endif /* defined (__cplusplus_winrt) */ }; /// /// The task handle type used to create a 'continuation task'. /// template struct _ContinuationTaskHandle : details::_PPLTaskHandle::_Type, _ContinuationTaskHandle<_InternalReturnType, _ContinuationReturnType, _Function, _IsTaskBased, _TypeSelection>, details::_ContinuationTaskHandleBase> { typedef typename details::_NormalizeVoidToUnitType<_ContinuationReturnType>::_Type _NormalizedContinuationReturnType; typename details::_Task_ptr<_ReturnType>::_Type _M_ancestorTaskImpl; typename details::_CopyableFunctor::type>::_Type _M_function; template _ContinuationTaskHandle( const typename details::_Task_ptr<_ReturnType>::_Type& _AncestorImpl, const typename details::_Task_ptr<_NormalizedContinuationReturnType>::_Type& _ContinuationImpl, _ForwardedFunction&& _Func, const task_continuation_context& _Context, details::_TaskInliningMode_t _InliningMode) : details::_PPLTaskHandle::_Type, _ContinuationTaskHandle<_InternalReturnType, _ContinuationReturnType, _Function, _IsTaskBased, _TypeSelection>, details::_ContinuationTaskHandleBase>::_PPLTaskHandle(_ContinuationImpl) , _M_ancestorTaskImpl(_AncestorImpl) , _M_function(std::forward<_ForwardedFunction>(_Func)) { this->_M_isTaskBasedContinuation = _IsTaskBased::value; this->_M_continuationContext = _Context; this->_M_continuationContext._Resolve(_AncestorImpl->_IsApartmentAware()); this->_M_inliningMode = _InliningMode; } virtual ~_ContinuationTaskHandle() {} template auto _LogWorkItemAndInvokeUserLambda(_Func&& _func, _Arg&& _value) const -> decltype(_func(std::forward<_Arg>(_value))) { details::_TaskWorkItemRAIILogger _LogWorkItem(this->_M_pTask->_M_taskEventLogger); CASABLANCA_UNREFERENCED_PARAMETER(_LogWorkItem); return _func(std::forward<_Arg>(_value)); } void _Perform() const { _Continue(_IsTaskBased(), _TypeSelection()); } void _SyncCancelAndPropagateException() const { if (_M_ancestorTaskImpl->_HasUserException()) { // If the ancestor encountered an exception, transfer the exception to the continuation // This traverses down the tree to propagate the exception. this->_M_pTask->_CancelWithExceptionHolder(_M_ancestorTaskImpl->_GetExceptionHolder(), true); } else { // If the ancestor was canceled, then your own execution should be canceled. // This traverses down the tree to cancel it. this->_M_pTask->_Cancel(true); } } // // Overload 0-0: _InternalReturnType -> _TaskType // // This is a straight task continuation which simply invokes its target with the ancestor's completion argument // void _Continue(std::false_type, details::_TypeSelectorNoAsync) const { this->_M_pTask->_FinalizeAndRunContinuations(_LogWorkItemAndInvokeUserLambda( _Continuation_func_transformer<_InternalReturnType, _ContinuationReturnType>::_Perform(_M_function), _M_ancestorTaskImpl->_GetResult())); } // // Overload 0-1: _InternalReturnType -> IAsyncOperation<_TaskType>^ (only under /ZW) // or // _InternalReturnType -> task<_TaskType> // // This is a straight task continuation which returns an async operation or a task which will be unwrapped for // continuation Depending on the output type, the right _AsyncInit gets invoked // void _Continue(std::false_type, details::_TypeSelectorAsyncOperationOrTask) const { typedef typename details::_FunctionTypeTraits<_Function, _InternalReturnType>::_FuncRetType _FuncOutputType; details::_Task_impl_base::_AsyncInit<_NormalizedContinuationReturnType, _ContinuationReturnType>( this->_M_pTask, _LogWorkItemAndInvokeUserLambda( _Continuation_func_transformer<_InternalReturnType, _FuncOutputType>::_Perform(_M_function), _M_ancestorTaskImpl->_GetResult())); } #if defined(__cplusplus_winrt) // // Overload 0-2: _InternalReturnType -> IAsyncAction^ // // This is a straight task continuation which returns an async action which will be unwrapped for continuation // void _Continue(std::false_type, details::_TypeSelectorAsyncAction) const { typedef details::_FunctionTypeTraits<_Function, _InternalReturnType>::_FuncRetType _FuncOutputType; details::_Task_impl_base::_AsyncInit<_NormalizedContinuationReturnType, _ContinuationReturnType>( this->_M_pTask, ref new details::_IAsyncActionToAsyncOperationConverter(_LogWorkItemAndInvokeUserLambda( _Continuation_func_transformer<_InternalReturnType, _FuncOutputType>::_Perform(_M_function), _M_ancestorTaskImpl->_GetResult()))); } // // Overload 0-3: _InternalReturnType -> IAsyncOperationWithProgress<_TaskType, _ProgressType>^ // // This is a straight task continuation which returns an async operation with progress which will be unwrapped // for continuation // void _Continue(std::false_type, details::_TypeSelectorAsyncOperationWithProgress) const { typedef details::_FunctionTypeTraits<_Function, _InternalReturnType>::_FuncRetType _FuncOutputType; auto _OpWithProgress = _LogWorkItemAndInvokeUserLambda( _Continuation_func_transformer<_InternalReturnType, _FuncOutputType>::_Perform(_M_function), _M_ancestorTaskImpl->_GetResult()); typedef details::_GetProgressType::_Value _ProgressType; details::_Task_impl_base::_AsyncInit<_NormalizedContinuationReturnType, _ContinuationReturnType>( this->_M_pTask, ref new details::_IAsyncOperationWithProgressToAsyncOperationConverter<_ContinuationReturnType, _ProgressType>(_OpWithProgress)); } // // Overload 0-4: _InternalReturnType -> IAsyncActionWithProgress<_ProgressType>^ // // This is a straight task continuation which returns an async action with progress which will be unwrapped for // continuation // void _Continue(std::false_type, details::_TypeSelectorAsyncActionWithProgress) const { typedef details::_FunctionTypeTraits<_Function, _InternalReturnType>::_FuncRetType _FuncOutputType; auto _OpWithProgress = _LogWorkItemAndInvokeUserLambda( _Continuation_func_transformer<_InternalReturnType, _FuncOutputType>::_Perform(_M_function), _M_ancestorTaskImpl->_GetResult()); typedef details::_GetProgressType::_Value _ProgressType; details::_Task_impl_base::_AsyncInit<_NormalizedContinuationReturnType, _ContinuationReturnType>( this->_M_pTask, ref new details::_IAsyncActionWithProgressToAsyncOperationConverter<_ProgressType>(_OpWithProgress)); } #endif /* defined (__cplusplus_winrt) */ // // Overload 1-0: task<_InternalReturnType> -> _TaskType // // This is an exception handling type of continuation which takes the task rather than the task's result. // void _Continue(std::true_type, details::_TypeSelectorNoAsync) const { typedef task<_InternalReturnType> _FuncInputType; task<_InternalReturnType> _ResultTask; _ResultTask._SetImpl(std::move(_M_ancestorTaskImpl)); this->_M_pTask->_FinalizeAndRunContinuations(_LogWorkItemAndInvokeUserLambda( _Continuation_func_transformer<_FuncInputType, _ContinuationReturnType>::_Perform(_M_function), std::move(_ResultTask))); } // // Overload 1-1: task<_InternalReturnType> -> IAsyncOperation<_TaskType>^ // or // task<_TaskType> // // This is an exception handling type of continuation which takes the task rather than // the task's result. It also returns an async operation or a task which will be unwrapped // for continuation // void _Continue(std::true_type, details::_TypeSelectorAsyncOperationOrTask) const { // The continuation takes a parameter of type task<_Input>, which is the same as the ancestor task. task<_InternalReturnType> _ResultTask; _ResultTask._SetImpl(std::move(_M_ancestorTaskImpl)); details::_Task_impl_base::_AsyncInit<_NormalizedContinuationReturnType, _ContinuationReturnType>( this->_M_pTask, _LogWorkItemAndInvokeUserLambda(_M_function, std::move(_ResultTask))); } #if defined(__cplusplus_winrt) // // Overload 1-2: task<_InternalReturnType> -> IAsyncAction^ // // This is an exception handling type of continuation which takes the task rather than // the task's result. It also returns an async action which will be unwrapped for continuation // void _Continue(std::true_type, details::_TypeSelectorAsyncAction) const { // The continuation takes a parameter of type task<_Input>, which is the same as the ancestor task. task<_InternalReturnType> _ResultTask; _ResultTask._SetImpl(std::move(_M_ancestorTaskImpl)); details::_Task_impl_base::_AsyncInit<_NormalizedContinuationReturnType, _ContinuationReturnType>( this->_M_pTask, ref new details::_IAsyncActionToAsyncOperationConverter( _LogWorkItemAndInvokeUserLambda(_M_function, std::move(_ResultTask)))); } // // Overload 1-3: task<_InternalReturnType> -> IAsyncOperationWithProgress<_TaskType, _ProgressType>^ // // This is an exception handling type of continuation which takes the task rather than // the task's result. It also returns an async operation with progress which will be unwrapped // for continuation // void _Continue(std::true_type, details::_TypeSelectorAsyncOperationWithProgress) const { // The continuation takes a parameter of type task<_Input>, which is the same as the ancestor task. task<_InternalReturnType> _ResultTask; _ResultTask._SetImpl(std::move(_M_ancestorTaskImpl)); typedef details::_GetProgressType::_Value _ProgressType; details::_Task_impl_base::_AsyncInit<_NormalizedContinuationReturnType, _ContinuationReturnType>( this->_M_pTask, ref new details::_IAsyncOperationWithProgressToAsyncOperationConverter<_ContinuationReturnType, _ProgressType>( _LogWorkItemAndInvokeUserLambda(_M_function, std::move(_ResultTask)))); } // // Overload 1-4: task<_InternalReturnType> -> IAsyncActionWithProgress<_ProgressType>^ // // This is an exception handling type of continuation which takes the task rather than // the task's result. It also returns an async operation with progress which will be unwrapped // for continuation // void _Continue(std::true_type, details::_TypeSelectorAsyncActionWithProgress) const { // The continuation takes a parameter of type task<_Input>, which is the same as the ancestor task. task<_InternalReturnType> _ResultTask; _ResultTask._SetImpl(std::move(_M_ancestorTaskImpl)); typedef details::_GetProgressType::_Value _ProgressType; details::_Task_impl_base::_AsyncInit<_NormalizedContinuationReturnType, _ContinuationReturnType>( this->_M_pTask, ref new details::_IAsyncActionWithProgressToAsyncOperationConverter<_ProgressType>( _LogWorkItemAndInvokeUserLambda(_M_function, std::move(_ResultTask)))); } #endif /* defined (__cplusplus_winrt) */ }; /// /// Initializes a task using a lambda, function pointer or function object. /// template void _TaskInitWithFunctor(const _Function& _Func) { typedef typename details::_InitFunctorTypeTraits<_InternalReturnType, decltype(_Func())> _Async_type_traits; _M_Impl->_M_fFromAsync = _Async_type_traits::_IsAsyncTask; _M_Impl->_M_fUnwrappedTask = _Async_type_traits::_IsUnwrappedTaskOrAsync; _M_Impl->_M_taskEventLogger._LogScheduleTask(false); _M_Impl->_ScheduleTask( new _InitialTaskHandle<_InternalReturnType, _Function, typename _Async_type_traits::_AsyncKind>(_GetImpl(), _Func), details::_NoInline); } /// /// Initializes a task using a task completion event. /// void _TaskInitNoFunctor(task_completion_event<_ReturnType>& _Event) { _Event._RegisterTask(_M_Impl); } #if defined(__cplusplus_winrt) /// /// Initializes a task using an asynchronous operation IAsyncOperation^ /// void _TaskInitAsyncOp( Windows::Foundation::IAsyncOperation::_Value> ^ _AsyncOp) { _M_Impl->_M_fFromAsync = true; // Mark this task as started here since we can set the state in the constructor without acquiring a lock. Once // _AsyncInit returns a completion could execute concurrently and the task must be fully initialized before that // happens. _M_Impl->_M_TaskState = details::_Task_impl_base::_Started; // Pass the shared pointer into _AsyncInit for storage in the Async Callback. details::_Task_impl_base::_AsyncInit<_ReturnType, _ReturnType>(_M_Impl, _AsyncOp); } /// /// Initializes a task using an asynchronous operation IAsyncOperation^ /// void _TaskInitNoFunctor( Windows::Foundation::IAsyncOperation::_Value> ^ _AsyncOp) { _TaskInitAsyncOp(_AsyncOp); } /// /// Initializes a task using an asynchronous operation with progress IAsyncOperationWithProgress^ /// template void _TaskInitNoFunctor( Windows::Foundation::IAsyncOperationWithProgress::_Value, _Progress> ^ _AsyncOp) { _TaskInitAsyncOp(ref new details::_IAsyncOperationWithProgressToAsyncOperationConverter< typename details::_ValueTypeOrRefType<_ReturnType>::_Value, _Progress>(_AsyncOp)); } #endif /* defined (__cplusplus_winrt) */ /// /// Initializes a task using a callable object. /// template void _TaskInitMaybeFunctor(_Function& _Func, std::true_type) { _TaskInitWithFunctor<_ReturnType, _Function>(_Func); } /// /// Initializes a task using a non-callable object. /// template void _TaskInitMaybeFunctor(_Ty& _Param, std::false_type) { _TaskInitNoFunctor(_Param); } template auto _ThenImpl(_Function&& _Func, const task_options& _TaskOptions) const -> typename details::_ContinuationTypeTraits<_Function, _InternalReturnType>::_TaskOfType { if (!_M_Impl) { throw invalid_operation("then() cannot be called on a default constructed task."); } details::_CancellationTokenState* _PTokenState = _TaskOptions.has_cancellation_token() ? _TaskOptions.get_cancellation_token()._GetImplValue() : nullptr; auto _Scheduler = _TaskOptions.has_scheduler() ? _TaskOptions.get_scheduler() : _GetImpl()->_GetScheduler(); auto _CreationStack = details::_get_internal_task_options(_TaskOptions)._M_hasPresetCreationCallstack ? details::_get_internal_task_options(_TaskOptions)._M_presetCreationCallstack : details::_TaskCreationCallstack(); return _ThenImpl<_InternalReturnType, _Function>(std::forward<_Function>(_Func), _PTokenState, _TaskOptions.get_continuation_context(), _Scheduler, _CreationStack); } /// /// The one and only implementation of then for void and non-void tasks. /// template auto _ThenImpl(_Function&& _Func, details::_CancellationTokenState* _PTokenState, const task_continuation_context& _ContinuationContext, scheduler_ptr _Scheduler, details::_TaskCreationCallstack _CreationStack, details::_TaskInliningMode_t _InliningMode = details::_NoInline) const -> typename details::_ContinuationTypeTraits<_Function, _InternalReturnType>::_TaskOfType { if (!_M_Impl) { throw invalid_operation("then() cannot be called on a default constructed task."); } typedef details::_FunctionTypeTraits<_Function, _InternalReturnType> _Function_type_traits; typedef details::_TaskTypeTraits _Async_type_traits; typedef typename _Async_type_traits::_TaskRetType _TaskType; // // A **nullptr** token state indicates that it was not provided by the user. In this case, we inherit the // antecedent's token UNLESS this is a an exception handling continuation. In that case, we break the chain with // a _None. That continuation is never canceled unless the user explicitly passes the same token. // if (_PTokenState == nullptr) { if (_Function_type_traits::_Takes_task::value) { _PTokenState = details::_CancellationTokenState::_None(); } else { _PTokenState = _GetImpl()->_M_pTokenState; } } task<_TaskType> _ContinuationTask; _ContinuationTask._CreateImpl(_PTokenState, _Scheduler); _ContinuationTask._GetImpl()->_M_fFromAsync = (_GetImpl()->_M_fFromAsync || _Async_type_traits::_IsAsyncTask); _ContinuationTask._GetImpl()->_M_fUnwrappedTask = _Async_type_traits::_IsUnwrappedTaskOrAsync; _ContinuationTask._SetTaskCreationCallstack(_CreationStack); _GetImpl()->_ScheduleContinuation( new _ContinuationTaskHandle<_InternalReturnType, _TaskType, _Function, typename _Function_type_traits::_Takes_task, typename _Async_type_traits::_AsyncKind>(_GetImpl(), _ContinuationTask._GetImpl(), std::forward<_Function>(_Func), _ContinuationContext, _InliningMode)); return _ContinuationTask; } // The underlying implementation for this task typename details::_Task_ptr<_ReturnType>::_Type _M_Impl; }; /// /// The Parallel Patterns Library (PPL) task class. A task object represents work that can be executed /// asynchronously, and concurrently with other tasks and parallel work produced by parallel algorithms in the /// Concurrency Runtime. It produces a result of type on successful completion. /// Tasks of type task<void> produce no result. A task can be waited upon and canceled independently of /// other tasks. It can also be composed with other tasks using continuations(then), and /// join(when_all) and choice(when_any) patterns. /// /// /// For more information, see . /// /**/ template<> class task { public: /// /// The type of the result an object of this class produces. /// /**/ typedef void result_type; /// /// Constructs a task object. /// /// /// The default constructor for a task is only present in order to allow tasks to be used within /// containers. A default constructed task cannot be used until you assign a valid task to it. Methods such as /// get, wait or then will throw an invalid_argument exception when called on a default constructed task. A task that is /// created from a task_completion_event will complete (and have its continuations scheduled) when the /// task completion event is set. The version of the constructor that takes a cancellation token /// creates a task that can be canceled using the cancellation_token_source the token was obtained from. /// Tasks created without a cancellation token are not cancelable. Tasks created from a /// Windows::Foundation::IAsyncInfo interface or a lambda that returns an IAsyncInfo interface /// reach their terminal state when the enclosed Windows Runtime asynchronous operation or action completes. /// Similarly, tasks created from a lambda that returns a task<result_type> reach their terminal /// state when the inner task reaches its terminal state, and not when the lambda returns. /// task behaves like a smart pointer and is safe to pass around by value. It can be accessed by /// multiple threads without the need for locks. The constructor overloads that take a /// Windows::Foundation::IAsyncInfo interface or a lambda returning such an interface, are only available to /// Windows Store apps. For more information, see . /// /**/ task() : _M_unitTask() { // The default constructor should create a task with a nullptr impl. This is a signal that the // task is not usable and should throw if any wait(), get() or then() APIs are used. } /// /// Constructs a task object. /// /// /// The type of the parameter from which the task is to be constructed. /// /// /// The parameter from which the task is to be constructed. This could be a lambda, a function object, a /// task_completion_event<result_type> object, or a Windows::Foundation::IAsyncInfo if you are /// using tasks in your Windows Store app. The lambda or function object should be a type equivalent to /// std::function<X(void)>, where X can be a variable of type result_type, /// task<result_type>, or a Windows::Foundation::IAsyncInfo in Windows Store apps. /// /// /// The default constructor for a task is only present in order to allow tasks to be used within /// containers. A default constructed task cannot be used until you assign a valid task to it. Methods such as /// get, wait or then will throw an invalid_argument exception when called on a default constructed task. A task that is /// created from a task_completion_event will complete (and have its continuations scheduled) when the /// task completion event is set. The version of the constructor that takes a cancellation token /// creates a task that can be canceled using the cancellation_token_source the token was obtained from. /// Tasks created without a cancellation token are not cancelable. Tasks created from a /// Windows::Foundation::IAsyncInfo interface or a lambda that returns an IAsyncInfo interface /// reach their terminal state when the enclosed Windows Runtime asynchronous operation or action completes. /// Similarly, tasks created from a lambda that returns a task<result_type> reach their terminal /// state when the inner task reaches its terminal state, and not when the lambda returns. /// task behaves like a smart pointer and is safe to pass around by value. It can be accessed by /// multiple threads without the need for locks. The constructor overloads that take a /// Windows::Foundation::IAsyncInfo interface or a lambda returning such an interface, are only available to /// Windows Store apps. For more information, see . /// /**/ template __declspec(noinline) // Ask for no inlining so that the PPLX_CAPTURE_CALLSTACK gives us the expected result explicit task(_Ty _Param, const task_options& _TaskOptions = task_options()) { details::_ValidateTaskConstructorArgs(_Param); _M_unitTask._CreateImpl(_TaskOptions.get_cancellation_token()._GetImplValue(), _TaskOptions.get_scheduler()); // Do not move the next line out of this function. It is important that PPLX_CAPTURE_CALLSTACK() evaluate to the // the call site of the task constructor. _M_unitTask._SetTaskCreationCallstack( details::_get_internal_task_options(_TaskOptions)._M_hasPresetCreationCallstack ? details::_get_internal_task_options(_TaskOptions)._M_presetCreationCallstack : PPLX_CAPTURE_CALLSTACK()); _TaskInitMaybeFunctor(_Param, details::_IsCallable(_Param, 0)); } /// /// Constructs a task object. /// /// /// The source task object. /// /// /// The default constructor for a task is only present in order to allow tasks to be used within /// containers. A default constructed task cannot be used until you assign a valid task to it. Methods such as /// get, wait or then will throw an invalid_argument exception when called on a default constructed task. A task that is /// created from a task_completion_event will complete (and have its continuations scheduled) when the /// task completion event is set. The version of the constructor that takes a cancellation token /// creates a task that can be canceled using the cancellation_token_source the token was obtained from. /// Tasks created without a cancellation token are not cancelable. Tasks created from a /// Windows::Foundation::IAsyncInfo interface or a lambda that returns an IAsyncInfo interface /// reach their terminal state when the enclosed Windows Runtime asynchronous operation or action completes. /// Similarly, tasks created from a lambda that returns a task<result_type> reach their terminal /// state when the inner task reaches its terminal state, and not when the lambda returns. /// task behaves like a smart pointer and is safe to pass around by value. It can be accessed by /// multiple threads without the need for locks. The constructor overloads that take a /// Windows::Foundation::IAsyncInfo interface or a lambda returning such an interface, are only available to /// Windows Store apps. For more information, see . /// /**/ task(const task& _Other) : _M_unitTask(_Other._M_unitTask) {} /// /// Constructs a task object. /// /// /// The source task object. /// /// /// The default constructor for a task is only present in order to allow tasks to be used within /// containers. A default constructed task cannot be used until you assign a valid task to it. Methods such as /// get, wait or then will throw an invalid_argument exception when called on a default constructed task. A task that is /// created from a task_completion_event will complete (and have its continuations scheduled) when the /// task completion event is set. The version of the constructor that takes a cancellation token /// creates a task that can be canceled using the cancellation_token_source the token was obtained from. /// Tasks created without a cancellation token are not cancelable. Tasks created from a /// Windows::Foundation::IAsyncInfo interface or a lambda that returns an IAsyncInfo interface /// reach their terminal state when the enclosed Windows Runtime asynchronous operation or action completes. /// Similarly, tasks created from a lambda that returns a task<result_type> reach their terminal /// state when the inner task reaches its terminal state, and not when the lambda returns. /// task behaves like a smart pointer and is safe to pass around by value. It can be accessed by /// multiple threads without the need for locks. The constructor overloads that take a /// Windows::Foundation::IAsyncInfo interface or a lambda returning such an interface, are only available to /// Windows Store apps. For more information, see . /// /**/ task(task&& _Other) : _M_unitTask(std::move(_Other._M_unitTask)) {} /// /// Replaces the contents of one task object with another. /// /// /// The source task object. /// /// /// As task behaves like a smart pointer, after a copy assignment, this task objects represents /// the same actual task as does. /// /**/ task& operator=(const task& _Other) { if (this != &_Other) { _M_unitTask = _Other._M_unitTask; } return *this; } /// /// Replaces the contents of one task object with another. /// /// /// The source task object. /// /// /// As task behaves like a smart pointer, after a copy assignment, this task objects represents /// the same actual task as does. /// /**/ task& operator=(task&& _Other) { if (this != &_Other) { _M_unitTask = std::move(_Other._M_unitTask); } return *this; } /// /// Adds a continuation task to this task. /// /// /// The type of the function object that will be invoked by this task. /// /// /// The continuation function to execute when this task completes. This continuation function must take as input /// a variable of either result_type or task<result_type>, where result_type is the /// type of the result this task produces. /// /// /// The cancellation token to associate with the continuation task. A continuation task that is created without /// a cancellation token will inherit the token of its antecedent task. /// /// /// The newly created continuation task. The result type of the returned task is determined by what returns. /// /// /// The overloads of then that take a lambda or functor that returns a Windows::Foundation::IAsyncInfo /// interface, are only available to Windows Store apps. For more information on how to use task /// continuations to compose asynchronous work, see . /// /**/ template __declspec(noinline) // Ask for no inlining so that the PPLX_CAPTURE_CALLSTACK gives us the expected result auto then(_Function&& _Func, task_options _TaskOptions = task_options()) const -> typename details::_ContinuationTypeTraits<_Function, void>::_TaskOfType { details::_get_internal_task_options(_TaskOptions)._set_creation_callstack(PPLX_CAPTURE_CALLSTACK()); return _M_unitTask._ThenImpl(std::forward<_Function>(_Func), _TaskOptions); } /// /// Adds a continuation task to this task. /// /// /// The type of the function object that will be invoked by this task. /// /// /// The continuation function to execute when this task completes. This continuation function must take as input /// a variable of either result_type or task<result_type>, where result_type is the /// type of the result this task produces. /// /// /// The cancellation token to associate with the continuation task. A continuation task that is created without /// a cancellation token will inherit the token of its antecedent task. /// /// /// A variable that specifies where the continuation should execute. This variable is only useful when used in a /// Windows Store style app. For more information, see task_continuation_context /// /// /// The newly created continuation task. The result type of the returned task is determined by what returns. /// /// /// The overloads of then that take a lambda or functor that returns a Windows::Foundation::IAsyncInfo /// interface, are only available to Windows Store apps. For more information on how to use task /// continuations to compose asynchronous work, see . /// /**/ template __declspec(noinline) // Ask for no inlining so that the PPLX_CAPTURE_CALLSTACK gives us the expected result auto then(_Function&& _Func, cancellation_token _CancellationToken, task_continuation_context _ContinuationContext) const -> typename details::_ContinuationTypeTraits<_Function, void>::_TaskOfType { task_options _TaskOptions(_CancellationToken, _ContinuationContext); details::_get_internal_task_options(_TaskOptions)._set_creation_callstack(PPLX_CAPTURE_CALLSTACK()); return _M_unitTask._ThenImpl(std::forward<_Function>(_Func), _TaskOptions); } /// /// Waits for this task to reach a terminal state. It is possible for wait to execute the task inline, if /// all of the tasks dependencies are satisfied, and it has not already been picked up for execution by a /// background worker. /// /// /// A task_status value which could be either completed or canceled. If the task /// encountered an exception during execution, or an exception was propagated to it from an antecedent task, /// wait will throw that exception. /// /**/ task_status wait() const { return _M_unitTask.wait(); } /// /// Returns the result this task produced. If the task is not in a terminal state, a call to get will /// wait for the task to finish. This method does not return a value when called on a task with a /// result_type of void. /// /// /// If the task is canceled, a call to get will throw a task_canceled exception. If the task encountered an different exception or an exception was /// propagated to it from an antecedent task, a call to get will throw that exception. /// /**/ void get() const { _M_unitTask.get(); } /// /// Determines if the task is completed. /// /// /// True if the task has completed, false otherwise. /// /// /// The function returns true if the task is completed or canceled (with or without user exception). /// bool is_done() const { return _M_unitTask.is_done(); } /// /// Returns the scheduler for this task /// /// /// A pointer to the scheduler /// scheduler_ptr scheduler() const { return _M_unitTask.scheduler(); } /// /// Determines whether the task unwraps a Windows Runtime IAsyncInfo interface or is descended from such /// a task. /// /// /// true if the task unwraps an IAsyncInfo interface or is descended from such a task, /// false otherwise. /// /**/ bool is_apartment_aware() const { return _M_unitTask.is_apartment_aware(); } /// /// Determines whether two task objects represent the same internal task. /// /// /// true if the objects refer to the same underlying task, and false otherwise. /// /**/ bool operator==(const task& _Rhs) const { return (_M_unitTask == _Rhs._M_unitTask); } /// /// Determines whether two task objects represent different internal tasks. /// /// /// true if the objects refer to different underlying tasks, and false otherwise. /// /**/ bool operator!=(const task& _Rhs) const { return !operator==(_Rhs); } /// /// Create an underlying task implementation. /// void _CreateImpl(details::_CancellationTokenState* _Ct, scheduler_ptr _Scheduler) { _M_unitTask._CreateImpl(_Ct, _Scheduler); } /// /// Return the underlying implementation for this task. /// const details::_Task_ptr::_Type& _GetImpl() const { return _M_unitTask._M_Impl; } /// /// Set the implementation of the task to be the supplied implementation. /// void _SetImpl(const details::_Task_ptr::_Type& _Impl) { _M_unitTask._SetImpl(_Impl); } /// /// Set the implementation of the task to be the supplied implementation using a move instead of a copy. /// void _SetImpl(details::_Task_ptr::_Type&& _Impl) { _M_unitTask._SetImpl(std::move(_Impl)); } /// /// Sets a property determining whether the task is apartment aware. /// void _SetAsync(bool _Async = true) { _M_unitTask._SetAsync(_Async); } /// /// Sets a field in the task impl to the return callstack for calls to the task constructors and the then /// method. /// void _SetTaskCreationCallstack(const details::_TaskCreationCallstack& _callstack) { _M_unitTask._SetTaskCreationCallstack(_callstack); } /// /// An internal version of then that takes additional flags and executes the continuation inline. Used for /// runtime internal continuations only. /// template auto _Then(_Function&& _Func, details::_CancellationTokenState* _PTokenState, details::_TaskInliningMode_t _InliningMode = details::_ForceInline) const -> typename details::_ContinuationTypeTraits<_Function, void>::_TaskOfType { // inherit from antecedent auto _Scheduler = _GetImpl()->_GetScheduler(); return _M_unitTask._ThenImpl(std::forward<_Function>(_Func), _PTokenState, task_continuation_context::use_default(), _Scheduler, PPLX_CAPTURE_CALLSTACK(), _InliningMode); } private: template friend class task; template friend class task_completion_event; /// /// Initializes a task using a task completion event. /// void _TaskInitNoFunctor(task_completion_event& _Event) { _M_unitTask._TaskInitNoFunctor(_Event._M_unitEvent); } #if defined(__cplusplus_winrt) /// /// Initializes a task using an asynchronous action IAsyncAction^ /// void _TaskInitNoFunctor(Windows::Foundation::IAsyncAction ^ _AsyncAction) { _M_unitTask._TaskInitAsyncOp(ref new details::_IAsyncActionToAsyncOperationConverter(_AsyncAction)); } /// /// Initializes a task using an asynchronous action with progress IAsyncActionWithProgress<_P>^ /// template void _TaskInitNoFunctor(Windows::Foundation::IAsyncActionWithProgress<_P> ^ _AsyncActionWithProgress) { _M_unitTask._TaskInitAsyncOp( ref new details::_IAsyncActionWithProgressToAsyncOperationConverter<_P>(_AsyncActionWithProgress)); } #endif /* defined (__cplusplus_winrt) */ /// /// Initializes a task using a callable object. /// template void _TaskInitMaybeFunctor(_Function& _Func, std::true_type) { _M_unitTask._TaskInitWithFunctor(_Func); } /// /// Initializes a task using a non-callable object. /// template void _TaskInitMaybeFunctor(_T& _Param, std::false_type) { _TaskInitNoFunctor(_Param); } // The void task contains a task of a dummy type so common code can be used for tasks with void and non-void // results. task _M_unitTask; }; namespace details { /// /// The following type traits are used for the create_task function. /// #if defined(__cplusplus_winrt) // Unwrap functions for asyncOperations template _Ty _GetUnwrappedType(Windows::Foundation::IAsyncOperation<_Ty> ^); void _GetUnwrappedType(Windows::Foundation::IAsyncAction ^); template _Ty _GetUnwrappedType(Windows::Foundation::IAsyncOperationWithProgress<_Ty, _Progress> ^); template void _GetUnwrappedType(Windows::Foundation::IAsyncActionWithProgress<_Progress> ^); #endif /* defined (__cplusplus_winrt) */ // Unwrap task template _Ty _GetUnwrappedType(task<_Ty>); // Unwrap all supported types template auto _GetUnwrappedReturnType(_Ty _Arg, int) -> decltype(_GetUnwrappedType(_Arg)); // fallback template _Ty _GetUnwrappedReturnType(_Ty, ...); /// /// _GetTaskType functions will retrieve task type T in task[T](Arg), /// for given constructor argument Arg and its property "callable". /// It will automatically unwrap argument to get the final return type if necessary. /// // Non-Callable template _Ty _GetTaskType(task_completion_event<_Ty>, std::false_type); // Non-Callable template auto _GetTaskType(_Ty _NonFunc, std::false_type) -> decltype(_GetUnwrappedType(_NonFunc)); // Callable template auto _GetTaskType(_Ty _Func, std::true_type) -> decltype(_GetUnwrappedReturnType(_Func(), 0)); // Special callable returns void void _GetTaskType(std::function, std::true_type); struct _BadArgType { }; template auto _FilterValidTaskType(_Ty _Param, int) -> decltype(_GetTaskType(_Param, _IsCallable(_Param, 0))); template _BadArgType _FilterValidTaskType(_Ty _Param, ...); template struct _TaskTypeFromParam { typedef decltype(_FilterValidTaskType(stdx::declval<_Ty>(), 0)) _Type; }; } // namespace details /// /// Creates a PPL task object. create_task can be used anywhere you would have /// used a task constructor. It is provided mainly for convenience, because it allows use of the auto keyword /// while creating tasks. /// /// /// The type of the parameter from which the task is to be constructed. /// /// /// The parameter from which the task is to be constructed. This could be a lambda or function object, a /// task_completion_event object, a different task object, or a Windows::Foundation::IAsyncInfo /// interface if you are using tasks in your Windows Store app. /// /// /// A new task of type T, that is inferred from . /// /// /// The first overload behaves like a task constructor that takes a single parameter. /// The second overload associates the cancellation token provided with the newly created task. If you use /// this overload you are not allowed to pass in a different task object as the first parameter. /// The type of the returned task is inferred from the first parameter to the function. If is a task_completion_event<T>, a task<T>, or a functor that returns /// either type T or task<T>, the type of the created task is task<T>. /// In a Windows Store app, if is of type /// Windows::Foundation::IAsyncOperation<T>^ or Windows::Foundation::IAsyncOperationWithProgress<T,P>^, /// or a functor that returns either of those types, the created task will be of type task<T>. If /// is of type Windows::Foundation::IAsyncAction^ or /// Windows::Foundation::IAsyncActionWithProgress<P>^, or a functor that returns either of those types, the /// created task will have type task<void>. /// /// /// /**/ template __declspec(noinline) auto create_task(_Ty _Param, task_options _TaskOptions = task_options()) -> task::_Type> { static_assert(!std::is_same::_Type, details::_BadArgType>::value, #if defined(__cplusplus_winrt) "incorrect argument for create_task; can be a callable object, an asynchronous operation, or a " "task_completion_event" #else /* defined (__cplusplus_winrt) */ "incorrect argument for create_task; can be a callable object or a task_completion_event" #endif /* defined (__cplusplus_winrt) */ ); details::_get_internal_task_options(_TaskOptions)._set_creation_callstack(PPLX_CAPTURE_CALLSTACK()); task::_Type> _CreatedTask(_Param, _TaskOptions); return _CreatedTask; } /// /// Creates a PPL task object. create_task can be used anywhere you would have /// used a task constructor. It is provided mainly for convenience, because it allows use of the auto keyword /// while creating tasks. /// /// /// The type of the parameter from which the task is to be constructed. /// /// /// The parameter from which the task is to be constructed. This could be a lambda or function object, a /// task_completion_event object, a different task object, or a Windows::Foundation::IAsyncInfo /// interface if you are using tasks in your Windows Store app. /// /// /// The cancellation token to associate with the task. When the source for this token is canceled, cancellation will /// be requested on the task. /// /// /// A new task of type T, that is inferred from . /// /// /// The first overload behaves like a task constructor that takes a single parameter. /// The second overload associates the cancellation token provided with the newly created task. If you use /// this overload you are not allowed to pass in a different task object as the first parameter. /// The type of the returned task is inferred from the first parameter to the function. If is a task_completion_event<T>, a task<T>, or a functor that returns /// either type T or task<T>, the type of the created task is task<T>. /// In a Windows Store app, if is of type /// Windows::Foundation::IAsyncOperation<T>^ or Windows::Foundation::IAsyncOperationWithProgress<T,P>^, /// or a functor that returns either of those types, the created task will be of type task<T>. If /// is of type Windows::Foundation::IAsyncAction^ or /// Windows::Foundation::IAsyncActionWithProgress<P>^, or a functor that returns either of those types, the /// created task will have type task<void>. /// /// /// /**/ template __declspec(noinline) task<_ReturnType> create_task(const task<_ReturnType>& _Task) { task<_ReturnType> _CreatedTask(_Task); return _CreatedTask; } #if defined(__cplusplus_winrt) namespace details { template task<_T> _To_task_helper(Windows::Foundation::IAsyncOperation<_T> ^ op) { return task<_T>(op); } template task<_T> _To_task_helper(Windows::Foundation::IAsyncOperationWithProgress<_T, _Progress> ^ op) { return task<_T>(op); } inline task _To_task_helper(Windows::Foundation::IAsyncAction ^ op) { return task(op); } template task _To_task_helper(Windows::Foundation::IAsyncActionWithProgress<_Progress> ^ op) { return task(op); } template class _ProgressDispatcherBase { public: virtual ~_ProgressDispatcherBase() {} virtual void _Report(const _ProgressType& _Val) = 0; }; template class _ProgressDispatcher : public _ProgressDispatcherBase<_ProgressType> { public: virtual ~_ProgressDispatcher() {} _ProgressDispatcher(_ClassPtrType _Ptr) : _M_ptr(_Ptr) {} virtual void _Report(const _ProgressType& _Val) { _M_ptr->_FireProgress(_Val); } private: _ClassPtrType _M_ptr; }; class _ProgressReporterCtorArgType { }; } // namespace details /// /// The progress reporter class allows reporting progress notifications of a specific type. Each progress_reporter /// object is bound to a particular asynchronous action or operation. /// /// /// The payload type of each progress notification reported through the progress reporter. /// /// /// This type is only available to Windows Store apps. /// /// /**/ template class progress_reporter { typedef std::shared_ptr> _PtrType; public: /// /// Sends a progress report to the asynchronous action or operation to which this progress reporter is bound. /// /// /// The payload to report through a progress notification. /// /**/ void report(const _ProgressType& _Val) const { _M_dispatcher->_Report(_Val); } template static progress_reporter _CreateReporter(_ClassPtrType _Ptr) { progress_reporter _Reporter; details::_ProgressDispatcherBase<_ProgressType>* _PDispatcher = new details::_ProgressDispatcher<_ProgressType, _ClassPtrType>(_Ptr); _Reporter._M_dispatcher = _PtrType(_PDispatcher); return _Reporter; } progress_reporter() {} private: progress_reporter(details::_ProgressReporterCtorArgType); _PtrType _M_dispatcher; }; namespace details { // // maps internal definitions for AsyncStatus and defines states that are not client visible // enum _AsyncStatusInternal { _AsyncCreated = -1, // externally invisible // client visible states (must match AsyncStatus exactly) _AsyncStarted = 0, // Windows::Foundation::AsyncStatus::Started, _AsyncCompleted = 1, // Windows::Foundation::AsyncStatus::Completed, _AsyncCanceled = 2, // Windows::Foundation::AsyncStatus::Canceled, _AsyncError = 3, // Windows::Foundation::AsyncStatus::Error, // non-client visible internal states _AsyncCancelPending, _AsyncClosed, _AsyncUndefined }; // // designates whether the "GetResults" method returns a single result (after complete fires) or multiple results // (which are progressively consumable between Start state and before Close is called) // enum _AsyncResultType { SingleResult = 0x0001, MultipleResults = 0x0002 }; // *************************************************************************** // Template type traits and helpers for async production APIs: // struct _ZeroArgumentFunctor { }; struct _OneArgumentFunctor { }; struct _TwoArgumentFunctor { }; // **************************************** // CLASS TYPES: // ******************** // TWO ARGUMENTS: // non-void arg: template _Arg1 _Arg1ClassHelperThunk(_ReturnType (_Class::*)(_Arg1, _Arg2) const); // non-void arg: template _Arg2 _Arg2ClassHelperThunk(_ReturnType (_Class::*)(_Arg1, _Arg2) const); template _ReturnType _ReturnTypeClassHelperThunk(_ReturnType (_Class::*)(_Arg1, _Arg2) const); template _TwoArgumentFunctor _ArgumentCountHelper(_ReturnType (_Class::*)(_Arg1, _Arg2) const); // ******************** // ONE ARGUMENT: // non-void arg: template _Arg1 _Arg1ClassHelperThunk(_ReturnType (_Class::*)(_Arg1) const); // non-void arg: template void _Arg2ClassHelperThunk(_ReturnType (_Class::*)(_Arg1) const); template _ReturnType _ReturnTypeClassHelperThunk(_ReturnType (_Class::*)(_Arg1) const); template _OneArgumentFunctor _ArgumentCountHelper(_ReturnType (_Class::*)(_Arg1) const); // ******************** // ZERO ARGUMENT: // void arg: template void _Arg1ClassHelperThunk(_ReturnType (_Class::*)() const); // void arg: template void _Arg2ClassHelperThunk(_ReturnType (_Class::*)() const); // void arg: template _ReturnType _ReturnTypeClassHelperThunk(_ReturnType (_Class::*)() const); template _ZeroArgumentFunctor _ArgumentCountHelper(_ReturnType (_Class::*)() const); // **************************************** // POINTER TYPES: // ******************** // TWO ARGUMENTS: template _Arg1 _Arg1PFNHelperThunk(_ReturnType(__cdecl*)(_Arg1, _Arg2)); template _Arg2 _Arg2PFNHelperThunk(_ReturnType(__cdecl*)(_Arg1, _Arg2)); template _ReturnType _ReturnTypePFNHelperThunk(_ReturnType(__cdecl*)(_Arg1, _Arg2)); template _TwoArgumentFunctor _ArgumentCountHelper(_ReturnType(__cdecl*)(_Arg1, _Arg2)); template _Arg1 _Arg1PFNHelperThunk(_ReturnType(__stdcall*)(_Arg1, _Arg2)); template _Arg2 _Arg2PFNHelperThunk(_ReturnType(__stdcall*)(_Arg1, _Arg2)); template _ReturnType _ReturnTypePFNHelperThunk(_ReturnType(__stdcall*)(_Arg1, _Arg2)); template _TwoArgumentFunctor _ArgumentCountHelper(_ReturnType(__stdcall*)(_Arg1, _Arg2)); template _Arg1 _Arg1PFNHelperThunk(_ReturnType(__fastcall*)(_Arg1, _Arg2)); template _Arg2 _Arg2PFNHelperThunk(_ReturnType(__fastcall*)(_Arg1, _Arg2)); template _ReturnType _ReturnTypePFNHelperThunk(_ReturnType(__fastcall*)(_Arg1, _Arg2)); template _TwoArgumentFunctor _ArgumentCountHelper(_ReturnType(__fastcall*)(_Arg1, _Arg2)); // ******************** // ONE ARGUMENT: template _Arg1 _Arg1PFNHelperThunk(_ReturnType(__cdecl*)(_Arg1)); template void _Arg2PFNHelperThunk(_ReturnType(__cdecl*)(_Arg1)); template _ReturnType _ReturnTypePFNHelperThunk(_ReturnType(__cdecl*)(_Arg1)); template _OneArgumentFunctor _ArgumentCountHelper(_ReturnType(__cdecl*)(_Arg1)); template _Arg1 _Arg1PFNHelperThunk(_ReturnType(__stdcall*)(_Arg1)); template void _Arg2PFNHelperThunk(_ReturnType(__stdcall*)(_Arg1)); template _ReturnType _ReturnTypePFNHelperThunk(_ReturnType(__stdcall*)(_Arg1)); template _OneArgumentFunctor _ArgumentCountHelper(_ReturnType(__stdcall*)(_Arg1)); template _Arg1 _Arg1PFNHelperThunk(_ReturnType(__fastcall*)(_Arg1)); template void _Arg2PFNHelperThunk(_ReturnType(__fastcall*)(_Arg1)); template _ReturnType _ReturnTypePFNHelperThunk(_ReturnType(__fastcall*)(_Arg1)); template _OneArgumentFunctor _ArgumentCountHelper(_ReturnType(__fastcall*)(_Arg1)); // ******************** // ZERO ARGUMENT: template void _Arg1PFNHelperThunk(_ReturnType(__cdecl*)()); template void _Arg2PFNHelperThunk(_ReturnType(__cdecl*)()); template _ReturnType _ReturnTypePFNHelperThunk(_ReturnType(__cdecl*)()); template _ZeroArgumentFunctor _ArgumentCountHelper(_ReturnType(__cdecl*)()); template void _Arg1PFNHelperThunk(_ReturnType(__stdcall*)()); template void _Arg2PFNHelperThunk(_ReturnType(__stdcall*)()); template _ReturnType _ReturnTypePFNHelperThunk(_ReturnType(__stdcall*)()); template _ZeroArgumentFunctor _ArgumentCountHelper(_ReturnType(__stdcall*)()); template void _Arg1PFNHelperThunk(_ReturnType(__fastcall*)()); template void _Arg2PFNHelperThunk(_ReturnType(__fastcall*)()); template _ReturnType _ReturnTypePFNHelperThunk(_ReturnType(__fastcall*)()); template _ZeroArgumentFunctor _ArgumentCountHelper(_ReturnType(__fastcall*)()); template struct _FunctorArguments { static const size_t _Count = 0; }; template<> struct _FunctorArguments<_OneArgumentFunctor> { static const size_t _Count = 1; }; template<> struct _FunctorArguments<_TwoArgumentFunctor> { static const size_t _Count = 2; }; template struct _FunctorTypeTraits { typedef decltype(_ArgumentCountHelper(&(_T::operator()))) _ArgumentCountType; static const size_t _ArgumentCount = _FunctorArguments<_ArgumentCountType>::_Count; typedef decltype(_ReturnTypeClassHelperThunk(&(_T::operator()))) _ReturnType; typedef decltype(_Arg1ClassHelperThunk(&(_T::operator()))) _Argument1Type; typedef decltype(_Arg2ClassHelperThunk(&(_T::operator()))) _Argument2Type; }; template struct _FunctorTypeTraits<_T*> { typedef decltype(_ArgumentCountHelper(stdx::declval<_T*>())) _ArgumentCountType; static const size_t _ArgumentCount = _FunctorArguments<_ArgumentCountType>::_Count; typedef decltype(_ReturnTypePFNHelperThunk(stdx::declval<_T*>())) _ReturnType; typedef decltype(_Arg1PFNHelperThunk(stdx::declval<_T*>())) _Argument1Type; typedef decltype(_Arg2PFNHelperThunk(stdx::declval<_T*>())) _Argument2Type; }; template struct _ProgressTypeTraits { static const bool _TakesProgress = false; typedef void _ProgressType; }; template struct _ProgressTypeTraits> { static const bool _TakesProgress = true; typedef typename _T _ProgressType; }; template::_ArgumentCount> struct _CAFunctorOptions { static const bool _TakesProgress = false; static const bool _TakesToken = false; typedef void _ProgressType; }; template struct _CAFunctorOptions<_T, 1> { private: typedef typename _FunctorTypeTraits<_T>::_Argument1Type _Argument1Type; public: static const bool _TakesProgress = _ProgressTypeTraits<_Argument1Type>::_TakesProgress; static const bool _TakesToken = !_TakesProgress; typedef typename _ProgressTypeTraits<_Argument1Type>::_ProgressType _ProgressType; }; template struct _CAFunctorOptions<_T, 2> { private: typedef typename _FunctorTypeTraits<_T>::_Argument1Type _Argument1Type; public: static const bool _TakesProgress = true; static const bool _TakesToken = true; typedef typename _ProgressTypeTraits<_Argument1Type>::_ProgressType _ProgressType; }; ref class _Zip { }; // *************************************************************************** // Async Operation Task Generators // // // Functor returns an IAsyncInfo - result needs to be wrapped in a task: // template struct _SelectorTaskGenerator { template static task<_ReturnType> _GenerateTask_0(const _Function& _Func, cancellation_token_source _Cts, const _TaskCreationCallstack& _callstack) { task_options _taskOptinos(_Cts.get_token()); details::_get_internal_task_options(_taskOptinos)._set_creation_callstack(_callstack); return task<_ReturnType>(_Func(), _taskOptinos); } template static task<_ReturnType> _GenerateTask_1C(const _Function& _Func, cancellation_token_source _Cts, const _TaskCreationCallstack& _callstack) { task_options _taskOptinos(_Cts.get_token()); details::_get_internal_task_options(_taskOptinos)._set_creation_callstack(_callstack); return task<_ReturnType>(_Func(_Cts.get_token()), _taskOptinos); } template static task<_ReturnType> _GenerateTask_1P(const _Function& _Func, const _ProgressObject& _Progress, cancellation_token_source _Cts, const _TaskCreationCallstack& _callstack) { task_options _taskOptinos(_Cts.get_token()); details::_get_internal_task_options(_taskOptinos)._set_creation_callstack(_callstack); return task<_ReturnType>(_Func(_Progress), _taskOptinos); } template static task<_ReturnType> _GenerateTask_2PC(const _Function& _Func, const _ProgressObject& _Progress, cancellation_token_source _Cts, const _TaskCreationCallstack& _callstack) { task_options _taskOptinos(_Cts.get_token()); details::_get_internal_task_options(_taskOptinos)._set_creation_callstack(_callstack); return task<_ReturnType>(_Func(_Progress, _Cts.get_token()), _taskOptinos); } }; template struct _SelectorTaskGenerator<_AsyncSelector, void> { template static task _GenerateTask_0(const _Function& _Func, cancellation_token_source _Cts, const _TaskCreationCallstack& _callstack) { task_options _taskOptinos(_Cts.get_token()); details::_get_internal_task_options(_taskOptinos)._set_creation_callstack(_callstack); return task(_Func(), _taskOptinos); } template static task _GenerateTask_1C(const _Function& _Func, cancellation_token_source _Cts, const _TaskCreationCallstack& _callstack) { task_options _taskOptinos(_Cts.get_token()); details::_get_internal_task_options(_taskOptinos)._set_creation_callstack(_callstack); return task(_Func(_Cts.get_token()), _taskOptinos); } template static task _GenerateTask_1P(const _Function& _Func, const _ProgressObject& _Progress, cancellation_token_source _Cts, const _TaskCreationCallstack& _callstack) { task_options _taskOptinos(_Cts.get_token()); details::_get_internal_task_options(_taskOptinos)._set_creation_callstack(_callstack); return task(_Func(_Progress), _taskOptinos); } template static task _GenerateTask_2PC(const _Function& _Func, const _ProgressObject& _Progress, cancellation_token_source _Cts, const _TaskCreationCallstack& _callstack) { task_options _taskOptinos(_Cts.get_token()); details::_get_internal_task_options(_taskOptinos)._set_creation_callstack(_callstack); return task(_Func(_Progress, _Cts.get_token()), _taskOptinos); } }; // // Functor returns a result - it needs to be wrapped in a task: // template struct _SelectorTaskGenerator<_TypeSelectorNoAsync, _ReturnType> { #pragma warning(push) #pragma warning(disable : 4702) template static task<_ReturnType> _GenerateTask_0(const _Function& _Func, cancellation_token_source _Cts, const _TaskCreationCallstack& _callstack) { task_options _taskOptinos(_Cts.get_token()); details::_get_internal_task_options(_taskOptinos)._set_creation_callstack(_callstack); return task<_ReturnType>( [=]() -> _ReturnType { _Task_generator_oversubscriber_t _Oversubscriber; (_Oversubscriber); return _Func(); }, _taskOptinos); } #pragma warning(pop) template static task<_ReturnType> _GenerateTask_1C(const _Function& _Func, cancellation_token_source _Cts, const _TaskCreationCallstack& _callstack) { task_options _taskOptinos(_Cts.get_token()); details::_get_internal_task_options(_taskOptinos)._set_creation_callstack(_callstack); return task<_ReturnType>( [=]() -> _ReturnType { _Task_generator_oversubscriber_t _Oversubscriber; (_Oversubscriber); return _Func(_Cts.get_token()); }, _taskOptinos); } template static task<_ReturnType> _GenerateTask_1P(const _Function& _Func, const _ProgressObject& _Progress, cancellation_token_source _Cts, const _TaskCreationCallstack& _callstack) { task_options _taskOptinos(_Cts.get_token()); details::_get_internal_task_options(_taskOptinos)._set_creation_callstack(_callstack); return task<_ReturnType>( [=]() -> _ReturnType { _Task_generator_oversubscriber_t _Oversubscriber; (_Oversubscriber); return _Func(_Progress); }, _taskOptinos); } template static task<_ReturnType> _GenerateTask_2PC(const _Function& _Func, const _ProgressObject& _Progress, cancellation_token_source _Cts, const _TaskCreationCallstack& _callstack) { task_options _taskOptinos(_Cts.get_token()); details::_get_internal_task_options(_taskOptinos)._set_creation_callstack(_callstack); return task<_ReturnType>( [=]() -> _ReturnType { _Task_generator_oversubscriber_t _Oversubscriber; (_Oversubscriber); return _Func(_Progress, _Cts.get_token()); }, _taskOptinos); } }; template<> struct _SelectorTaskGenerator<_TypeSelectorNoAsync, void> { template static task _GenerateTask_0(const _Function& _Func, cancellation_token_source _Cts, const _TaskCreationCallstack& _callstack) { task_options _taskOptinos(_Cts.get_token()); details::_get_internal_task_options(_taskOptinos)._set_creation_callstack(_callstack); return task( [=]() { _Task_generator_oversubscriber_t _Oversubscriber; (_Oversubscriber); _Func(); }, _taskOptinos); } template static task _GenerateTask_1C(const _Function& _Func, cancellation_token_source _Cts, const _TaskCreationCallstack& _callstack) { task_options _taskOptinos(_Cts.get_token()); details::_get_internal_task_options(_taskOptinos)._set_creation_callstack(_callstack); return task( [=]() { _Task_generator_oversubscriber_t _Oversubscriber; (_Oversubscriber); _Func(_Cts.get_token()); }, _taskOptinos); } template static task _GenerateTask_1P(const _Function& _Func, const _ProgressObject& _Progress, cancellation_token_source _Cts, const _TaskCreationCallstack& _callstack) { task_options _taskOptinos(_Cts.get_token()); details::_get_internal_task_options(_taskOptinos)._set_creation_callstack(_callstack); return task( [=]() { _Task_generator_oversubscriber_t _Oversubscriber; (_Oversubscriber); _Func(_Progress); }, _taskOptinos); } template static task _GenerateTask_2PC(const _Function& _Func, const _ProgressObject& _Progress, cancellation_token_source _Cts, const _TaskCreationCallstack& _callstack) { task_options _taskOptinos(_Cts.get_token()); details::_get_internal_task_options(_taskOptinos)._set_creation_callstack(_callstack); return task( [=]() { _Task_generator_oversubscriber_t _Oversubscriber; (_Oversubscriber); _Func(_Progress, _Cts.get_token()); }, _taskOptinos); } }; // // Functor returns a task - the task can directly be returned: // template struct _SelectorTaskGenerator<_TypeSelectorAsyncTask, _ReturnType> { template static task<_ReturnType> _GenerateTask_0(const _Function& _Func, cancellation_token_source _Cts, const _TaskCreationCallstack& _callstack) { return _Func(); } template static task<_ReturnType> _GenerateTask_1C(const _Function& _Func, cancellation_token_source _Cts, const _TaskCreationCallstack& _callstack) { return _Func(_Cts.get_token()); } template static task<_ReturnType> _GenerateTask_1P(const _Function& _Func, const _ProgressObject& _Progress, cancellation_token_source _Cts, const _TaskCreationCallstack& _callstack) { return _Func(_Progress); } template static task<_ReturnType> _GenerateTask_2PC(const _Function& _Func, const _ProgressObject& _Progress, cancellation_token_source _Cts, const _TaskCreationCallstack& _callstack) { return _Func(_Progress, _Cts.get_token()); } }; template<> struct _SelectorTaskGenerator<_TypeSelectorAsyncTask, void> { template static task _GenerateTask_0(const _Function& _Func, cancellation_token_source _Cts, const _TaskCreationCallstack& _callstack) { return _Func(); } template static task _GenerateTask_1C(const _Function& _Func, cancellation_token_source _Cts, const _TaskCreationCallstack& _callstack) { return _Func(_Cts.get_token()); } template static task _GenerateTask_1P(const _Function& _Func, const _ProgressObject& _Progress, cancellation_token_source _Cts, const _TaskCreationCallstack& _callstack) { return _Func(_Progress); } template static task _GenerateTask_2PC(const _Function& _Func, const _ProgressObject& _Progress, cancellation_token_source _Cts, const _TaskCreationCallstack& _callstack) { return _Func(_Progress, _Cts.get_token()); } }; template struct _TaskGenerator { }; template struct _TaskGenerator<_Generator, false, false> { template static auto _GenerateTask(const _Function& _Func, _ClassPtr _Ptr, cancellation_token_source _Cts, const _TaskCreationCallstack& _callstack) -> decltype(_Generator::_GenerateTask_0(_Func, _Cts, _callstack)) { return _Generator::_GenerateTask_0(_Func, _Cts, _callstack); } }; template struct _TaskGenerator<_Generator, true, false> { template static auto _GenerateTask(const _Function& _Func, _ClassPtr _Ptr, cancellation_token_source _Cts, const _TaskCreationCallstack& _callstack) -> decltype(_Generator::_GenerateTask_0(_Func, _Cts, _callstack)) { return _Generator::_GenerateTask_1C(_Func, _Cts, _callstack); } }; template struct _TaskGenerator<_Generator, false, true> { template static auto _GenerateTask(const _Function& _Func, _ClassPtr _Ptr, cancellation_token_source _Cts, const _TaskCreationCallstack& _callstack) -> decltype(_Generator::_GenerateTask_0(_Func, _Cts, _callstack)) { return _Generator::_GenerateTask_1P( _Func, progress_reporter<_ProgressType>::_CreateReporter(_Ptr), _Cts, _callstack); } }; template struct _TaskGenerator<_Generator, true, true> { template static auto _GenerateTask(const _Function& _Func, _ClassPtr _Ptr, cancellation_token_source _Cts, const _TaskCreationCallstack& _callstack) -> decltype(_Generator::_GenerateTask_0(_Func, _Cts, _callstack)) { return _Generator::_GenerateTask_2PC( _Func, progress_reporter<_ProgressType>::_CreateReporter(_Ptr), _Cts, _callstack); } }; // *************************************************************************** // Async Operation Attributes Classes // // These classes are passed through the hierarchy of async base classes in order to hold multiple attributes of a given // async construct in a single container. An attribute class must define: // // Mandatory: // ------------------------- // // _AsyncBaseType : The Windows Runtime interface which is being implemented. // _CompletionDelegateType : The Windows Runtime completion delegate type for the interface. // _ProgressDelegateType : If _TakesProgress is true, the Windows Runtime progress delegate type for the interface. // If it is false, an empty Windows Runtime type. _ReturnType : The return type of the async construct // (void for actions / non-void for operations) // // _TakesProgress : An indication as to whether or not // // _Generate_Task : A function adapting the user's function into what's necessary to produce the appropriate // task // // Optional: // ------------------------- // template struct _AsyncAttributes { }; template struct _AsyncAttributes<_Function, _ProgressType, _ReturnType, _TaskTraits, _TakesToken, true> { typedef typename Windows::Foundation::IAsyncOperationWithProgress<_ReturnType, _ProgressType> _AsyncBaseType; typedef typename Windows::Foundation::AsyncOperationProgressHandler<_ReturnType, _ProgressType> _ProgressDelegateType; typedef typename Windows::Foundation::AsyncOperationWithProgressCompletedHandler<_ReturnType, _ProgressType> _CompletionDelegateType; typedef typename _ReturnType _ReturnType; typedef typename _ProgressType _ProgressType; typedef typename _TaskTraits::_AsyncKind _AsyncKind; typedef typename _SelectorTaskGenerator<_AsyncKind, _ReturnType> _SelectorTaskGenerator; typedef typename _TaskGenerator<_SelectorTaskGenerator, _TakesToken, true> _TaskGenerator; static const bool _TakesProgress = true; static const bool _TakesToken = _TakesToken; template static task<_ReturnType> _Generate_Task(const _Function& _Func, _ClassPtr _Ptr, cancellation_token_source _Cts, const _TaskCreationCallstack& _callstack) { return _TaskGenerator::_GenerateTask<_Function, _ClassPtr, _ProgressType>(_Func, _Ptr, _Cts, _callstack); } }; template struct _AsyncAttributes<_Function, _ProgressType, _ReturnType, _TaskTraits, _TakesToken, false> { typedef typename Windows::Foundation::IAsyncOperation<_ReturnType> _AsyncBaseType; typedef _Zip _ProgressDelegateType; typedef typename Windows::Foundation::AsyncOperationCompletedHandler<_ReturnType> _CompletionDelegateType; typedef typename _ReturnType _ReturnType; typedef typename _TaskTraits::_AsyncKind _AsyncKind; typedef typename _SelectorTaskGenerator<_AsyncKind, _ReturnType> _SelectorTaskGenerator; typedef typename _TaskGenerator<_SelectorTaskGenerator, _TakesToken, false> _TaskGenerator; static const bool _TakesProgress = false; static const bool _TakesToken = _TakesToken; template static task<_ReturnType> _Generate_Task(const _Function& _Func, _ClassPtr _Ptr, cancellation_token_source _Cts, const _TaskCreationCallstack& _callstack) { return _TaskGenerator::_GenerateTask<_Function, _ClassPtr, _ProgressType>(_Func, _Ptr, _Cts, _callstack); } }; template struct _AsyncAttributes<_Function, _ProgressType, void, _TaskTraits, _TakesToken, true> { typedef typename Windows::Foundation::IAsyncActionWithProgress<_ProgressType> _AsyncBaseType; typedef typename Windows::Foundation::AsyncActionProgressHandler<_ProgressType> _ProgressDelegateType; typedef typename Windows::Foundation::AsyncActionWithProgressCompletedHandler<_ProgressType> _CompletionDelegateType; typedef void _ReturnType; typedef typename _ProgressType _ProgressType; typedef typename _TaskTraits::_AsyncKind _AsyncKind; typedef typename _SelectorTaskGenerator<_AsyncKind, _ReturnType> _SelectorTaskGenerator; typedef typename _TaskGenerator<_SelectorTaskGenerator, _TakesToken, true> _TaskGenerator; static const bool _TakesProgress = true; static const bool _TakesToken = _TakesToken; template static task<_ReturnType> _Generate_Task(const _Function& _Func, _ClassPtr _Ptr, cancellation_token_source _Cts, const _TaskCreationCallstack& _callstack) { return _TaskGenerator::_GenerateTask<_Function, _ClassPtr, _ProgressType>(_Func, _Ptr, _Cts, _callstack); } }; template struct _AsyncAttributes<_Function, _ProgressType, void, _TaskTraits, _TakesToken, false> { typedef typename Windows::Foundation::IAsyncAction _AsyncBaseType; typedef _Zip _ProgressDelegateType; typedef typename Windows::Foundation::AsyncActionCompletedHandler _CompletionDelegateType; typedef void _ReturnType; typedef typename _TaskTraits::_AsyncKind _AsyncKind; typedef typename _SelectorTaskGenerator<_AsyncKind, _ReturnType> _SelectorTaskGenerator; typedef typename _TaskGenerator<_SelectorTaskGenerator, _TakesToken, false> _TaskGenerator; static const bool _TakesProgress = false; static const bool _TakesToken = _TakesToken; template static task<_ReturnType> _Generate_Task(const _Function& _Func, _ClassPtr _Ptr, cancellation_token_source _Cts, const _TaskCreationCallstack& _callstack) { return _TaskGenerator::_GenerateTask<_Function, _ClassPtr, _ProgressType>(_Func, _Ptr, _Cts, _callstack); } }; template struct _AsyncLambdaTypeTraits { typedef typename _FunctorTypeTraits<_Function>::_ReturnType _ReturnType; typedef typename _FunctorTypeTraits<_Function>::_Argument1Type _Argument1Type; typedef typename _CAFunctorOptions<_Function>::_ProgressType _ProgressType; static const bool _TakesProgress = _CAFunctorOptions<_Function>::_TakesProgress; static const bool _TakesToken = _CAFunctorOptions<_Function>::_TakesToken; typedef typename _TaskTypeTraits<_ReturnType> _TaskTraits; typedef typename _AsyncAttributes<_Function, _ProgressType, typename _TaskTraits::_TaskRetType, _TaskTraits, _TakesToken, _TakesProgress> _AsyncAttributes; }; // *************************************************************************** // AsyncInfo (and completion) Layer: // // // Internal base class implementation for async operations (based on internal Windows representation for ABI level async // operations) // template ref class _AsyncInfoBase abstract : _Attributes::_AsyncBaseType { internal : _AsyncInfoBase() : _M_currentStatus(_AsyncStatusInternal::_AsyncCreated) , _M_errorCode(S_OK) , _M_completeDelegate(nullptr) , _M_CompleteDelegateAssigned(0) , _M_CallbackMade(0) { _M_id = ::pplx::details::platform::GetNextAsyncId(); } public: virtual typename _Attributes::_ReturnType GetResults() { throw ::Platform::Exception::CreateException(E_UNEXPECTED); } virtual property unsigned int Id { unsigned int get() { _CheckValidStateForAsyncInfoCall(); return _M_id; } void set(unsigned int id) { _CheckValidStateForAsyncInfoCall(); if (id == 0) { throw ::Platform::Exception::CreateException(E_INVALIDARG); } else if (_M_currentStatus != _AsyncStatusInternal::_AsyncCreated) { throw ::Platform::Exception::CreateException(E_ILLEGAL_METHOD_CALL); } _M_id = id; } } virtual property Windows::Foundation::AsyncStatus Status { Windows::Foundation::AsyncStatus get() { _CheckValidStateForAsyncInfoCall(); _AsyncStatusInternal _Current = _M_currentStatus; // // Map our internal cancel pending to canceled. This way "pending canceled" looks to the outside as // "canceled" but can still transition to "completed" if the operation completes without acknowledging the // cancellation request // switch (_Current) { case _AsyncCancelPending: _Current = _AsyncCanceled; break; case _AsyncCreated: _Current = _AsyncStarted; break; default: break; } return static_cast(_Current); } } virtual property Windows::Foundation::HResult ErrorCode { Windows::Foundation::HResult get() { _CheckValidStateForAsyncInfoCall(); Windows::Foundation::HResult _Hr; _Hr.Value = _M_errorCode; return _Hr; } } virtual property typename _Attributes::_ProgressDelegateType ^ Progress { typename typename _Attributes::_ProgressDelegateType ^ get() { return _GetOnProgress(); } void set(typename _Attributes::_ProgressDelegateType ^ _ProgressHandler) { _PutOnProgress(_ProgressHandler); } } virtual void Cancel() { if (_TransitionToState(_AsyncCancelPending)) { _OnCancel(); } } virtual void Close() { if (_TransitionToState(_AsyncClosed)) { _OnClose(); } else { if (_M_currentStatus != _AsyncClosed) // Closed => Closed transition is just ignored { throw ::Platform::Exception::CreateException(E_ILLEGAL_STATE_CHANGE); } } } virtual property typename _Attributes::_CompletionDelegateType ^ Completed { typename _Attributes::_CompletionDelegateType ^ get() { _CheckValidStateForDelegateCall(); return _M_completeDelegate; } void set(typename _Attributes::_CompletionDelegateType ^ _CompleteHandler) { _CheckValidStateForDelegateCall(); // this delegate property is "write once" if (InterlockedIncrement(&_M_CompleteDelegateAssigned) == 1) { _M_completeDelegateContext = _ContextCallback::_CaptureCurrent(); _M_completeDelegate = _CompleteHandler; // Guarantee that the write of _M_completeDelegate is ordered with respect to the read of state // below as perceived from _FireCompletion on another thread. MemoryBarrier(); if (_IsTerminalState()) { _FireCompletion(); } } else { throw ::Platform::Exception::CreateException(E_ILLEGAL_DELEGATE_ASSIGNMENT); } } } protected private : // _Start - this is not externally visible since async operations "hot start" before returning to the caller void _Start() { if (_TransitionToState(_AsyncStarted)) { _OnStart(); } else { throw ::Platform::Exception::CreateException(E_ILLEGAL_STATE_CHANGE); } } void _FireCompletion() { _TryTransitionToCompleted(); // we guarantee that completion can only ever be fired once if (_M_completeDelegate != nullptr && InterlockedIncrement(&_M_CallbackMade) == 1) { _M_completeDelegateContext._CallInContext([=] { _M_completeDelegate((_Attributes::_AsyncBaseType ^) this, this->Status); _M_completeDelegate = nullptr; }); } } virtual typename _Attributes::_ProgressDelegateType ^ _GetOnProgress() { throw ::Platform::Exception::CreateException(E_UNEXPECTED); } virtual void _PutOnProgress(typename _Attributes::_ProgressDelegateType ^ _ProgressHandler) { throw ::Platform::Exception::CreateException(E_UNEXPECTED); } bool _TryTransitionToCompleted() { return _TransitionToState(_AsyncStatusInternal::_AsyncCompleted); } bool _TryTransitionToCancelled() { return _TransitionToState(_AsyncStatusInternal::_AsyncCanceled); } bool _TryTransitionToError(const HRESULT error) { _InterlockedCompareExchange(reinterpret_cast(&_M_errorCode), error, S_OK); return _TransitionToState(_AsyncStatusInternal::_AsyncError); } // This method checks to see if the delegate properties can be // modified in the current state and generates the appropriate // error hr in the case of violation. inline void _CheckValidStateForDelegateCall() { if (_M_currentStatus == _AsyncClosed) { throw ::Platform::Exception::CreateException(E_ILLEGAL_METHOD_CALL); } } // This method checks to see if results can be collected in the // current state and generates the appropriate error hr in // the case of a violation. inline void _CheckValidStateForResultsCall() { _AsyncStatusInternal _Current = _M_currentStatus; if (_Current == _AsyncError) { throw ::Platform::Exception::CreateException(_M_errorCode); } #pragma warning(push) #pragma warning(disable : 4127) // Conditional expression is constant // single result illegal before transition to Completed or Cancelled state if (resultType == SingleResult) #pragma warning(pop) { if (_Current != _AsyncCompleted) { throw ::Platform::Exception::CreateException(E_ILLEGAL_METHOD_CALL); } } // multiple results can be called after Start has been called and before/after Completed else if (_Current != _AsyncStarted && _Current != _AsyncCancelPending && _Current != _AsyncCanceled && _Current != _AsyncCompleted) { throw ::Platform::Exception::CreateException(E_ILLEGAL_METHOD_CALL); } } // This method can be called by derived classes periodically to determine // whether the asynchronous operation should continue processing or should // be halted. inline bool _ContinueAsyncOperation() { return (_M_currentStatus == _AsyncStarted); } // These two methods are used to allow the async worker implementation do work on // state transitions. No real "work" should be done in these methods. In other words // they should not block for a long time on UI timescales. virtual void _OnStart() = 0; virtual void _OnClose() = 0; virtual void _OnCancel() = 0; private: // This method is used to check if calls to the AsyncInfo properties // (id, status, errorcode) are legal in the current state. It also // generates the appropriate error hr to return in the case of an // illegal call. inline void _CheckValidStateForAsyncInfoCall() { _AsyncStatusInternal _Current = _M_currentStatus; if (_Current == _AsyncClosed) { throw ::Platform::Exception::CreateException(E_ILLEGAL_METHOD_CALL); } else if (_Current == _AsyncCreated) { throw ::Platform::Exception::CreateException(E_ASYNC_OPERATION_NOT_STARTED); } } inline bool _TransitionToState(const _AsyncStatusInternal _NewState) { _AsyncStatusInternal _Current = _M_currentStatus; // This enforces the valid state transitions of the asynchronous worker object // state machine. switch (_NewState) { case _AsyncStatusInternal::_AsyncStarted: if (_Current != _AsyncCreated) { return false; } break; case _AsyncStatusInternal::_AsyncCompleted: if (_Current != _AsyncStarted && _Current != _AsyncCancelPending) { return false; } break; case _AsyncStatusInternal::_AsyncCancelPending: if (_Current != _AsyncStarted) { return false; } break; case _AsyncStatusInternal::_AsyncCanceled: if (_Current != _AsyncStarted && _Current != _AsyncCancelPending) { return false; } break; case _AsyncStatusInternal::_AsyncError: if (_Current != _AsyncStarted && _Current != _AsyncCancelPending) { return false; } break; case _AsyncStatusInternal::_AsyncClosed: if (!_IsTerminalState(_Current)) { return false; } break; default: return false; break; } // attempt the transition to the new state // Note: if currentStatus_ == _Current, then there was no intervening write // by the async work object and the swap succeeded. _AsyncStatusInternal _RetState = static_cast<_AsyncStatusInternal>(_InterlockedCompareExchange( reinterpret_cast(&_M_currentStatus), _NewState, static_cast(_Current))); // ICE returns the former state, if the returned state and the // state we captured at the beginning of this method are the same, // the swap succeeded. return (_RetState == _Current); } inline bool _IsTerminalState() { return _IsTerminalState(_M_currentStatus); } inline bool _IsTerminalState(_AsyncStatusInternal status) { return (status == _AsyncError || status == _AsyncCanceled || status == _AsyncCompleted || status == _AsyncClosed); } private: _ContextCallback _M_completeDelegateContext; typename _Attributes::_CompletionDelegateType ^ volatile _M_completeDelegate; _AsyncStatusInternal volatile _M_currentStatus; HRESULT volatile _M_errorCode; unsigned int _M_id; long volatile _M_CompleteDelegateAssigned; long volatile _M_CallbackMade; }; // *************************************************************************** // Progress Layer (optional): // template ref class _AsyncProgressBase abstract : _AsyncInfoBase<_Attributes, _ResultType> { }; template ref class _AsyncProgressBase<_Attributes, true, _ResultType> abstract : _AsyncInfoBase<_Attributes, _ResultType> { internal : _AsyncProgressBase() : _AsyncInfoBase<_Attributes, _ResultType>(), _M_progressDelegate(nullptr) { } virtual typename _Attributes::_ProgressDelegateType ^ _GetOnProgress() override { _CheckValidStateForDelegateCall(); return _M_progressDelegate; } virtual void _PutOnProgress(typename _Attributes::_ProgressDelegateType ^ _ProgressHandler) override { _CheckValidStateForDelegateCall(); _M_progressDelegate = _ProgressHandler; _M_progressDelegateContext = _ContextCallback::_CaptureCurrent(); } void _FireProgress(const typename _Attributes::_ProgressType& _ProgressValue) { if (_M_progressDelegate != nullptr) { _M_progressDelegateContext._CallInContext( [=] { _M_progressDelegate((_Attributes::_AsyncBaseType ^) this, _ProgressValue); }); } } private: _ContextCallback _M_progressDelegateContext; typename _Attributes::_ProgressDelegateType ^ _M_progressDelegate; }; template ref class _AsyncBaseProgressLayer abstract : _AsyncProgressBase<_Attributes, _Attributes::_TakesProgress, _ResultType> { }; // *************************************************************************** // Task Adaptation Layer: // // // _AsyncTaskThunkBase provides a bridge between IAsync and task. // template ref class _AsyncTaskThunkBase abstract : _AsyncBaseProgressLayer<_Attributes> { public: virtual _ReturnType GetResults() override { _CheckValidStateForResultsCall(); return _M_task.get(); } internal : typedef task<_ReturnType> _TaskType; _AsyncTaskThunkBase(const _TaskType& _Task) : _M_task(_Task) {} _AsyncTaskThunkBase() {} protected: virtual void _OnStart() override { _M_task.then([=](_TaskType _Antecedent) { try { _Antecedent.get(); } catch (task_canceled&) { _TryTransitionToCancelled(); } catch (::Platform::Exception ^ _Ex) { _TryTransitionToError(_Ex->HResult); } catch (...) { _TryTransitionToError(E_FAIL); } _FireCompletion(); }); } internal : _TaskType _M_task; cancellation_token_source _M_cts; }; template ref class _AsyncTaskThunk : _AsyncTaskThunkBase<_Attributes, typename _Attributes::_ReturnType> { internal : _AsyncTaskThunk(const _TaskType& _Task) : _AsyncTaskThunkBase(_Task) { } _AsyncTaskThunk() {} protected: virtual void _OnClose() override {} virtual void _OnCancel() override { _M_cts.cancel(); } }; // *************************************************************************** // Async Creation Layer: // template ref class _AsyncTaskGeneratorThunk sealed : _AsyncTaskThunk::_AsyncAttributes> { internal : typedef typename _AsyncLambdaTypeTraits<_Function>::_AsyncAttributes _Attributes; typedef typename _AsyncTaskThunk<_Attributes> _Base; typedef typename _Attributes::_AsyncBaseType _AsyncBaseType; _AsyncTaskGeneratorThunk(const _Function& _Func, const _TaskCreationCallstack& _callstack) : _M_func(_Func), _M_creationCallstack(_callstack) { // Virtual call here is safe as the class is declared 'sealed' _Start(); } protected: // // The only thing we must do different from the base class is we must spin the hot task on transition from // Created->Started. Otherwise, let the base thunk handle everything. // virtual void _OnStart() override { // // Call the appropriate task generator to actually produce a task of the expected type. This might adapt the // user lambda for progress reports, wrap the return result in a task, or allow for direct return of a task // depending on the form of the lambda. // _M_task = _Attributes::_Generate_Task(_M_func, this, _M_cts, _M_creationCallstack); _Base::_OnStart(); } virtual void _OnCancel() override { _Base::_OnCancel(); } private: _TaskCreationCallstack _M_creationCallstack; _Function _M_func; }; } // namespace details /// /// Creates a Windows Runtime asynchronous construct based on a user supplied lambda or function object. The return /// type of create_async is one of either IAsyncAction^, /// IAsyncActionWithProgress<TProgress>^, IAsyncOperation<TResult>^, or /// IAsyncOperationWithProgress<TResult, TProgress>^ based on the signature of the lambda passed to the /// method. /// /// /// The lambda or function object from which to create a Windows Runtime asynchronous construct. /// /// /// An asynchronous construct represented by an IAsyncAction^, IAsyncActionWithProgress<TProgress>^, /// IAsyncOperation<TResult>^, or an IAsyncOperationWithProgress<TResult, TProgress>^. The interface /// returned depends on the signature of the lambda passed into the function. /// /// /// The return type of the lambda determines whether the construct is an action or an operation. /// Lambdas that return void cause the creation of actions. Lambdas that return a result of type /// TResult cause the creation of operations of TResult. The lambda may also return a /// task<TResult> which encapsulates the asynchronous work within itself or is the continuation of a /// chain of tasks that represent the asynchronous work. In this case, the lambda itself is executed inline, since /// the tasks are the ones that execute asynchronously, and the return type of the lambda is unwrapped to produce /// the asynchronous construct returned by create_async. This implies that a lambda that returns a /// task<void> will cause the creation of actions, and a lambda that returns a task<TResult> will cause /// the creation of operations of TResult. The lambda may take either zero, one or two arguments. The /// valid arguments are progress_reporter<TProgress> and cancellation_token, in that order if /// both are used. A lambda without arguments causes the creation of an asynchronous construct without the /// capability for progress reporting. A lambda that takes a progress_reporter<TProgress> will cause /// create_async to return an asynchronous construct which reports progress of type TProgress each time the /// report method of the progress_reporter object is called. A lambda that takes a cancellation_token may use /// that token to check for cancellation, or pass it to tasks that it creates so that cancellation of the /// asynchronous construct causes cancellation of those tasks. /// If the body of the lambda or function object returns a result (and not a task<TResult>), the lambda /// will be executed asynchronously within the process MTA in the context of a task the Runtime implicitly creates /// for it. The IAsyncInfo::Cancel method will cause cancellation of the implicit task. If the /// body of the lambda returns a task, the lambda executes inline, and by declaring the lambda to take an argument /// of type cancellation_token you can trigger cancellation of any tasks you create within the lambda by /// passing that token in when you create them. You may also use the register_callback method on the token to /// cause the Runtime to invoke a callback when you call IAsyncInfo::Cancel on the async operation or action /// produced.. This function is only available to Windows Store apps. /// /// /// /// /**/ template __declspec(noinline) details::_AsyncTaskGeneratorThunk<_Function> ^ create_async(const _Function& _Func) { static_assert(std::is_same::value, "argument to create_async must be a callable object taking zero, one or two arguments"); return ref new details::_AsyncTaskGeneratorThunk<_Function>(_Func, PPLX_CAPTURE_CALLSTACK()); } #endif /* defined (__cplusplus_winrt) */ namespace details { // Helper struct for when_all operators to know when tasks have completed template struct _RunAllParam { _RunAllParam() : _M_completeCount(0), _M_numTasks(0) {} void _Resize(size_t _Len, bool _SkipVector = false) { _M_numTasks = _Len; if (!_SkipVector) { _M_vector._Result.resize(_Len); } } task_completion_event<_Unit_type> _M_completed; _ResultHolder> _M_vector; _ResultHolder<_Type> _M_mergeVal; atomic_size_t _M_completeCount; size_t _M_numTasks; }; template struct _RunAllParam> { _RunAllParam() : _M_completeCount(0), _M_numTasks(0) {} void _Resize(size_t _Len, bool _SkipVector = false) { _M_numTasks = _Len; if (!_SkipVector) { _M_vector.resize(_Len); } } task_completion_event<_Unit_type> _M_completed; std::vector<_ResultHolder>> _M_vector; atomic_size_t _M_completeCount; size_t _M_numTasks; }; // Helper struct specialization for void template<> struct _RunAllParam<_Unit_type> { _RunAllParam() : _M_completeCount(0), _M_numTasks(0) {} void _Resize(size_t _Len) { _M_numTasks = _Len; } task_completion_event<_Unit_type> _M_completed; atomic_size_t _M_completeCount; size_t _M_numTasks; }; inline void _JoinAllTokens_Add(const cancellation_token_source& _MergedSrc, _CancellationTokenState* _PJoinedTokenState) { if (_PJoinedTokenState != nullptr && _PJoinedTokenState != _CancellationTokenState::_None()) { cancellation_token _T = cancellation_token::_FromImpl(_PJoinedTokenState); _T.register_callback([=]() { _MergedSrc.cancel(); }); } } template void _WhenAllContinuationWrapper(_RunAllParam<_ElementType> * _PParam, _Function _Func, task<_TaskType> & _Task) { if (_Task._GetImpl()->_IsCompleted()) { _Func(); if (atomic_increment(_PParam->_M_completeCount) == _PParam->_M_numTasks) { // Inline execute its direct continuation, the _ReturnTask _PParam->_M_completed.set(_Unit_type()); // It's safe to delete it since all usage of _PParam in _ReturnTask has been finished. delete _PParam; } } else { _ASSERTE(_Task._GetImpl()->_IsCanceled()); if (_Task._GetImpl()->_HasUserException()) { // _Cancel will return false if the TCE is already canceled with or without exception _PParam->_M_completed._Cancel(_Task._GetImpl()->_GetExceptionHolder()); } else { _PParam->_M_completed._Cancel(); } if (atomic_increment(_PParam->_M_completeCount) == _PParam->_M_numTasks) { delete _PParam; } } } template struct _WhenAllImpl { static task> _Perform(const task_options& _TaskOptions, _Iterator _Begin, _Iterator _End) { _CancellationTokenState* _PTokenState = _TaskOptions.has_cancellation_token() ? _TaskOptions.get_cancellation_token()._GetImplValue() : nullptr; auto _PParam = new _RunAllParam<_ElementType>(); cancellation_token_source _MergedSource; // Step1: Create task completion event. task_options _Options(_TaskOptions); _Options.set_cancellation_token(_MergedSource.get_token()); task<_Unit_type> _All_tasks_completed(_PParam->_M_completed, _Options); // The return task must be created before step 3 to enforce inline execution. auto _ReturnTask = _All_tasks_completed._Then( [=](_Unit_type) -> std::vector<_ElementType> { return _PParam->_M_vector.Get(); }, nullptr); // Step2: Combine and check tokens, and count elements in range. if (_PTokenState) { _JoinAllTokens_Add(_MergedSource, _PTokenState); _PParam->_Resize(static_cast(std::distance(_Begin, _End))); } else { size_t _TaskNum = 0; for (auto _PTask = _Begin; _PTask != _End; ++_PTask) { _TaskNum++; _JoinAllTokens_Add(_MergedSource, _PTask->_GetImpl()->_M_pTokenState); } _PParam->_Resize(_TaskNum); } // Step3: Check states of previous tasks. if (_Begin == _End) { _PParam->_M_completed.set(_Unit_type()); delete _PParam; } else { size_t _Index = 0; for (auto _PTask = _Begin; _PTask != _End; ++_PTask) { if (_PTask->is_apartment_aware()) { _ReturnTask._SetAsync(); } _PTask->_Then( [_PParam, _Index](task<_ElementType> _ResultTask) { auto _PParamCopy = _PParam; auto _IndexCopy = _Index; auto _Func = [_PParamCopy, _IndexCopy, &_ResultTask]() { _PParamCopy->_M_vector._Result[_IndexCopy] = _ResultTask._GetImpl()->_GetResult(); }; _WhenAllContinuationWrapper(_PParam, _Func, _ResultTask); }, _CancellationTokenState::_None()); _Index++; } } return _ReturnTask; } }; template struct _WhenAllImpl, _Iterator> { static task> _Perform(const task_options& _TaskOptions, _Iterator _Begin, _Iterator _End) { _CancellationTokenState* _PTokenState = _TaskOptions.has_cancellation_token() ? _TaskOptions.get_cancellation_token()._GetImplValue() : nullptr; auto _PParam = new _RunAllParam>(); cancellation_token_source _MergedSource; // Step1: Create task completion event. task_options _Options(_TaskOptions); _Options.set_cancellation_token(_MergedSource.get_token()); task<_Unit_type> _All_tasks_completed(_PParam->_M_completed, _Options); // The return task must be created before step 3 to enforce inline execution. auto _ReturnTask = _All_tasks_completed._Then( [=](_Unit_type) -> std::vector<_ElementType> { _ASSERTE(_PParam->_M_completeCount == _PParam->_M_numTasks); std::vector<_ElementType> _Result; for (size_t _I = 0; _I < _PParam->_M_numTasks; _I++) { const std::vector<_ElementType>& _Vec = _PParam->_M_vector[_I].Get(); _Result.insert(_Result.end(), _Vec.begin(), _Vec.end()); } return _Result; }, nullptr); // Step2: Combine and check tokens, and count elements in range. if (_PTokenState) { _JoinAllTokens_Add(_MergedSource, _PTokenState); _PParam->_Resize(static_cast(std::distance(_Begin, _End))); } else { size_t _TaskNum = 0; for (auto _PTask = _Begin; _PTask != _End; ++_PTask) { _TaskNum++; _JoinAllTokens_Add(_MergedSource, _PTask->_GetImpl()->_M_pTokenState); } _PParam->_Resize(_TaskNum); } // Step3: Check states of previous tasks. if (_Begin == _End) { _PParam->_M_completed.set(_Unit_type()); delete _PParam; } else { size_t _Index = 0; for (auto _PTask = _Begin; _PTask != _End; ++_PTask) { if (_PTask->is_apartment_aware()) { _ReturnTask._SetAsync(); } _PTask->_Then( [_PParam, _Index](task> _ResultTask) { auto _PParamCopy = _PParam; auto _IndexCopy = _Index; auto _Func = [_PParamCopy, _IndexCopy, &_ResultTask]() { _PParamCopy->_M_vector[_IndexCopy].Set(_ResultTask._GetImpl()->_GetResult()); }; _WhenAllContinuationWrapper(_PParam, _Func, _ResultTask); }, _CancellationTokenState::_None()); _Index++; } } return _ReturnTask; } }; template struct _WhenAllImpl { static task _Perform(const task_options& _TaskOptions, _Iterator _Begin, _Iterator _End) { _CancellationTokenState* _PTokenState = _TaskOptions.has_cancellation_token() ? _TaskOptions.get_cancellation_token()._GetImplValue() : nullptr; auto _PParam = new _RunAllParam<_Unit_type>(); cancellation_token_source _MergedSource; // Step1: Create task completion event. task_options _Options(_TaskOptions); _Options.set_cancellation_token(_MergedSource.get_token()); task<_Unit_type> _All_tasks_completed(_PParam->_M_completed, _Options); // The return task must be created before step 3 to enforce inline execution. auto _ReturnTask = _All_tasks_completed._Then([=](_Unit_type) {}, nullptr); // Step2: Combine and check tokens, and count elements in range. if (_PTokenState) { _JoinAllTokens_Add(_MergedSource, _PTokenState); _PParam->_Resize(static_cast(std::distance(_Begin, _End))); } else { size_t _TaskNum = 0; for (auto _PTask = _Begin; _PTask != _End; ++_PTask) { _TaskNum++; _JoinAllTokens_Add(_MergedSource, _PTask->_GetImpl()->_M_pTokenState); } _PParam->_Resize(_TaskNum); } // Step3: Check states of previous tasks. if (_Begin == _End) { _PParam->_M_completed.set(_Unit_type()); delete _PParam; } else { for (auto _PTask = _Begin; _PTask != _End; ++_PTask) { if (_PTask->is_apartment_aware()) { _ReturnTask._SetAsync(); } _PTask->_Then( [_PParam](task _ResultTask) { auto _Func = []() {}; _WhenAllContinuationWrapper(_PParam, _Func, _ResultTask); }, _CancellationTokenState::_None()); } } return _ReturnTask; } }; template task> _WhenAllVectorAndValue( const task>& _VectorTask, const task<_ReturnType>& _ValueTask, bool _OutputVectorFirst) { auto _PParam = new _RunAllParam<_ReturnType>(); cancellation_token_source _MergedSource; // Step1: Create task completion event. task<_Unit_type> _All_tasks_completed(_PParam->_M_completed, _MergedSource.get_token()); // The return task must be created before step 3 to enforce inline execution. auto _ReturnTask = _All_tasks_completed._Then( [=](_Unit_type) -> std::vector<_ReturnType> { _ASSERTE(_PParam->_M_completeCount == 2); auto _Result = _PParam->_M_vector.Get(); // copy by value auto _mergeVal = _PParam->_M_mergeVal.Get(); if (_OutputVectorFirst == true) { _Result.push_back(_mergeVal); } else { _Result.insert(_Result.begin(), _mergeVal); } return _Result; }, nullptr); // Step2: Combine and check tokens. _JoinAllTokens_Add(_MergedSource, _VectorTask._GetImpl()->_M_pTokenState); _JoinAllTokens_Add(_MergedSource, _ValueTask._GetImpl()->_M_pTokenState); // Step3: Check states of previous tasks. _PParam->_Resize(2, true); if (_VectorTask.is_apartment_aware() || _ValueTask.is_apartment_aware()) { _ReturnTask._SetAsync(); } _VectorTask._Then( [_PParam](task> _ResultTask) { auto _PParamCopy = _PParam; auto _Func = [_PParamCopy, &_ResultTask]() { auto _ResultLocal = _ResultTask._GetImpl()->_GetResult(); _PParamCopy->_M_vector.Set(_ResultLocal); }; _WhenAllContinuationWrapper(_PParam, _Func, _ResultTask); }, _CancellationTokenState::_None()); _ValueTask._Then( [_PParam](task<_ReturnType> _ResultTask) { auto _PParamCopy = _PParam; auto _Func = [_PParamCopy, &_ResultTask]() { auto _ResultLocal = _ResultTask._GetImpl()->_GetResult(); _PParamCopy->_M_mergeVal.Set(_ResultLocal); }; _WhenAllContinuationWrapper(_PParam, _Func, _ResultTask); }, _CancellationTokenState::_None()); return _ReturnTask; } } // namespace details /// /// Creates a task that will complete successfully when all of the tasks supplied as arguments complete /// successfully. /// /// /// The type of the input iterator. /// /// /// The position of the first element in the range of elements to be combined into the resulting task. /// /// /// The position of the first element beyond the range of elements to be combined into the resulting task. /// /// /// A task that completes successfully when all of the input tasks have completed successfully. If the input tasks /// are of type T, the output of this function will be a task<std::vector<T>>. If the /// input tasks are of type void the output task will also be a task<void>. /// /// /// If one of the tasks is canceled or throws an exception, the returned task will complete early, in the canceled /// state, and the exception, if one is encountered, will be thrown if you call get() or wait() on /// that task. /// /// /**/ template auto when_all(_Iterator _Begin, _Iterator _End, const task_options& _TaskOptions = task_options()) -> decltype(details::_WhenAllImpl::value_type::result_type, _Iterator>::_Perform(_TaskOptions, _Begin, _End)) { typedef typename std::iterator_traits<_Iterator>::value_type::result_type _ElementType; return details::_WhenAllImpl<_ElementType, _Iterator>::_Perform(_TaskOptions, _Begin, _End); } /// /// Creates a task that will complete successfully when both of the tasks supplied as arguments complete /// successfully. /// /// /// The type of the returned task. /// /// /// The first task to combine into the resulting task. /// /// /// The second task to combine into the resulting task. /// /// /// A task that completes successfully when both of the input tasks have completed successfully. If the input tasks /// are of type T, the output of this function will be a task<std::vector<T>>. If the /// input tasks are of type void the output task will also be a task<void>. To allow for /// a construct of the sort taskA && taskB && taskC, which are combined in pairs, the && /// operator produces a task<std::vector<T>> if either one or both of the tasks are of type /// task<std::vector<T>>. /// /// /// If one of the tasks is canceled or throws an exception, the returned task will complete early, in the canceled /// state, and the exception, if one is encountered, will be thrown if you call get() or wait() on /// that task. /// /// /**/ template auto operator&&(const task<_ReturnType>& _Lhs, const task<_ReturnType>& _Rhs) -> decltype(when_all(&_Lhs, &_Lhs)) { task<_ReturnType> _PTasks[2] = {_Lhs, _Rhs}; return when_all(_PTasks, _PTasks + 2); } /// /// Creates a task that will complete successfully when both of the tasks supplied as arguments complete /// successfully. /// /// /// The type of the returned task. /// /// /// The first task to combine into the resulting task. /// /// /// The second task to combine into the resulting task. /// /// /// A task that completes successfully when both of the input tasks have completed successfully. If the input tasks /// are of type T, the output of this function will be a task<std::vector<T>>. If the /// input tasks are of type void the output task will also be a task<void>. To allow for /// a construct of the sort taskA && taskB && taskC, which are combined in pairs, the && /// operator produces a task<std::vector<T>> if either one or both of the tasks are of type /// task<std::vector<T>>. /// /// /// If one of the tasks is canceled or throws an exception, the returned task will complete early, in the canceled /// state, and the exception, if one is encountered, will be thrown if you call get() or wait() on /// that task. /// /// /**/ template auto operator&&(const task>& _Lhs, const task<_ReturnType>& _Rhs) -> decltype(details::_WhenAllVectorAndValue(_Lhs, _Rhs, true)) { return details::_WhenAllVectorAndValue(_Lhs, _Rhs, true); } /// /// Creates a task that will complete successfully when both of the tasks supplied as arguments complete /// successfully. /// /// /// The type of the returned task. /// /// /// The first task to combine into the resulting task. /// /// /// The second task to combine into the resulting task. /// /// /// A task that completes successfully when both of the input tasks have completed successfully. If the input tasks /// are of type T, the output of this function will be a task<std::vector<T>>. If the /// input tasks are of type void the output task will also be a task<void>. To allow for /// a construct of the sort taskA && taskB && taskC, which are combined in pairs, the && /// operator produces a task<std::vector<T>> if either one or both of the tasks are of type /// task<std::vector<T>>. /// /// /// If one of the tasks is canceled or throws an exception, the returned task will complete early, in the canceled /// state, and the exception, if one is encountered, will be thrown if you call get() or wait() on /// that task. /// /// /**/ template auto operator&&(const task<_ReturnType>& _Lhs, const task>& _Rhs) -> decltype(details::_WhenAllVectorAndValue(_Rhs, _Lhs, false)) { return details::_WhenAllVectorAndValue(_Rhs, _Lhs, false); } /// /// Creates a task that will complete successfully when both of the tasks supplied as arguments complete /// successfully. /// /// /// The type of the returned task. /// /// /// The first task to combine into the resulting task. /// /// /// The second task to combine into the resulting task. /// /// /// A task that completes successfully when both of the input tasks have completed successfully. If the input tasks /// are of type T, the output of this function will be a task<std::vector<T>>. If the /// input tasks are of type void the output task will also be a task<void>. To allow for /// a construct of the sort taskA && taskB && taskC, which are combined in pairs, the && /// operator produces a task<std::vector<T>> if either one or both of the tasks are of type /// task<std::vector<T>>. /// /// /// If one of the tasks is canceled or throws an exception, the returned task will complete early, in the canceled /// state, and the exception, if one is encountered, will be thrown if you call get() or wait() on /// that task. /// /// /**/ template auto operator&&(const task>& _Lhs, const task>& _Rhs) -> decltype(when_all(&_Lhs, &_Lhs)) { task> _PTasks[2] = {_Lhs, _Rhs}; return when_all(_PTasks, _PTasks + 2); } namespace details { // Helper struct for when_any operators to know when tasks have completed template struct _RunAnyParam { _RunAnyParam() : _M_exceptionRelatedToken(nullptr), _M_completeCount(0), _M_numTasks(0), _M_fHasExplicitToken(false) { } ~_RunAnyParam() { if (_CancellationTokenState::_IsValid(_M_exceptionRelatedToken)) _M_exceptionRelatedToken->_Release(); } task_completion_event<_CompletionType> _M_Completed; cancellation_token_source _M_cancellationSource; _CancellationTokenState* _M_exceptionRelatedToken; atomic_size_t _M_completeCount; size_t _M_numTasks; bool _M_fHasExplicitToken; }; template void _WhenAnyContinuationWrapper(_RunAnyParam<_CompletionType>* _PParam, const _Function& _Func, task<_TaskType>& _Task) { bool _IsTokenCancled = !_PParam->_M_fHasExplicitToken && _Task._GetImpl()->_M_pTokenState != _CancellationTokenState::_None() && _Task._GetImpl()->_M_pTokenState->_IsCanceled(); if (_Task._GetImpl()->_IsCompleted() && !_IsTokenCancled) { _Func(); if (atomic_increment(_PParam->_M_completeCount) == _PParam->_M_numTasks) { delete _PParam; } } else { _ASSERTE(_Task._GetImpl()->_IsCanceled() || _IsTokenCancled); if (_Task._GetImpl()->_HasUserException() && !_IsTokenCancled) { if (_PParam->_M_Completed._StoreException(_Task._GetImpl()->_GetExceptionHolder())) { // This can only enter once. _PParam->_M_exceptionRelatedToken = _Task._GetImpl()->_M_pTokenState; _ASSERTE(_PParam->_M_exceptionRelatedToken); // Deref token will be done in the _PParam destructor. if (_PParam->_M_exceptionRelatedToken != _CancellationTokenState::_None()) { _PParam->_M_exceptionRelatedToken->_Reference(); } } } if (atomic_increment(_PParam->_M_completeCount) == _PParam->_M_numTasks) { // If no one has be completed so far, we need to make some final cancellation decision. if (!_PParam->_M_Completed._IsTriggered()) { // If we already explicit token, we can skip the token join part. if (!_PParam->_M_fHasExplicitToken) { if (_PParam->_M_exceptionRelatedToken) { _JoinAllTokens_Add(_PParam->_M_cancellationSource, _PParam->_M_exceptionRelatedToken); } else { // If haven't captured any exception token yet, there was no exception for all those tasks, // so just pick a random token (current one) for normal cancellation. _JoinAllTokens_Add(_PParam->_M_cancellationSource, _Task._GetImpl()->_M_pTokenState); } } // Do exception cancellation or normal cancellation based on whether it has stored exception. _PParam->_M_Completed._Cancel(); } delete _PParam; } } } template struct _WhenAnyImpl { static task> _Perform(const task_options& _TaskOptions, _Iterator _Begin, _Iterator _End) { if (_Begin == _End) { throw invalid_operation("when_any(begin, end) cannot be called on an empty container."); } _CancellationTokenState* _PTokenState = _TaskOptions.has_cancellation_token() ? _TaskOptions.get_cancellation_token()._GetImplValue() : nullptr; auto _PParam = new _RunAnyParam, _CancellationTokenState*>>(); if (_PTokenState) { _JoinAllTokens_Add(_PParam->_M_cancellationSource, _PTokenState); _PParam->_M_fHasExplicitToken = true; } task_options _Options(_TaskOptions); _Options.set_cancellation_token(_PParam->_M_cancellationSource.get_token()); task, _CancellationTokenState*>> _Any_tasks_completed( _PParam->_M_Completed, _Options); // Keep a copy ref to the token source auto _CancellationSource = _PParam->_M_cancellationSource; _PParam->_M_numTasks = static_cast(std::distance(_Begin, _End)); size_t _Index = 0; for (auto _PTask = _Begin; _PTask != _End; ++_PTask) { if (_PTask->is_apartment_aware()) { _Any_tasks_completed._SetAsync(); } _PTask->_Then( [_PParam, _Index](task<_ElementType> _ResultTask) { auto _PParamCopy = _PParam; // Dev10 auto _IndexCopy = _Index; // Dev10 auto _Func = [&_ResultTask, _PParamCopy, _IndexCopy]() { _PParamCopy->_M_Completed.set( std::make_pair(std::make_pair(_ResultTask._GetImpl()->_GetResult(), _IndexCopy), _ResultTask._GetImpl()->_M_pTokenState)); }; _WhenAnyContinuationWrapper(_PParam, _Func, _ResultTask); }, _CancellationTokenState::_None()); _Index++; } // All _Any_tasks_completed._SetAsync() must be finished before this return continuation task being created. return _Any_tasks_completed._Then( [=](std::pair, _CancellationTokenState*> _Result) -> std::pair<_ElementType, size_t> { _ASSERTE(_Result.second); if (!_PTokenState) { _JoinAllTokens_Add(_CancellationSource, _Result.second); } return _Result.first; }, nullptr); } }; template struct _WhenAnyImpl { static task _Perform(const task_options& _TaskOptions, _Iterator _Begin, _Iterator _End) { if (_Begin == _End) { throw invalid_operation("when_any(begin, end) cannot be called on an empty container."); } _CancellationTokenState* _PTokenState = _TaskOptions.has_cancellation_token() ? _TaskOptions.get_cancellation_token()._GetImplValue() : nullptr; auto _PParam = new _RunAnyParam>(); if (_PTokenState) { _JoinAllTokens_Add(_PParam->_M_cancellationSource, _PTokenState); _PParam->_M_fHasExplicitToken = true; } task_options _Options(_TaskOptions); _Options.set_cancellation_token(_PParam->_M_cancellationSource.get_token()); task> _Any_tasks_completed(_PParam->_M_Completed, _Options); // Keep a copy ref to the token source auto _CancellationSource = _PParam->_M_cancellationSource; _PParam->_M_numTasks = static_cast(std::distance(_Begin, _End)); size_t _Index = 0; for (auto _PTask = _Begin; _PTask != _End; ++_PTask) { if (_PTask->is_apartment_aware()) { _Any_tasks_completed._SetAsync(); } _PTask->_Then( [_PParam, _Index](task _ResultTask) { auto _PParamCopy = _PParam; // Dev10 auto _IndexCopy = _Index; // Dev10 auto _Func = [&_ResultTask, _PParamCopy, _IndexCopy]() { _PParamCopy->_M_Completed.set( std::make_pair(_IndexCopy, _ResultTask._GetImpl()->_M_pTokenState)); }; _WhenAnyContinuationWrapper(_PParam, _Func, _ResultTask); }, _CancellationTokenState::_None()); _Index++; } // All _Any_tasks_completed._SetAsync() must be finished before this return continuation task being created. return _Any_tasks_completed._Then( [=](std::pair _Result) -> size_t { _ASSERTE(_Result.second); if (!_PTokenState) { _JoinAllTokens_Add(_CancellationSource, _Result.second); } return _Result.first; }, nullptr); } }; } // namespace details /// /// Creates a task that will complete successfully when any of the tasks supplied as arguments completes /// successfully. /// /// /// The type of the input iterator. /// /// /// The position of the first element in the range of elements to be combined into the resulting task. /// /// /// The position of the first element beyond the range of elements to be combined into the resulting task. /// /// /// A task that completes successfully when any one of the input tasks has completed successfully. If the input /// tasks are of type T, the output of this function will be a task<std::pair<T, /// size_t>>>, where the first element of the pair is the result of the completing task, and the second /// element is the index of the task that finished. If the input tasks are of type void the output is a /// task<size_t>, where the result is the index of the completing task. /// /// /**/ template auto when_any(_Iterator _Begin, _Iterator _End, const task_options& _TaskOptions = task_options()) -> decltype(details::_WhenAnyImpl::value_type::result_type, _Iterator>::_Perform(_TaskOptions, _Begin, _End)) { typedef typename std::iterator_traits<_Iterator>::value_type::result_type _ElementType; return details::_WhenAnyImpl<_ElementType, _Iterator>::_Perform(_TaskOptions, _Begin, _End); } /// /// Creates a task that will complete successfully when any of the tasks supplied as arguments completes /// successfully. /// /// /// The type of the input iterator. /// /// /// The position of the first element in the range of elements to be combined into the resulting task. /// /// /// The position of the first element beyond the range of elements to be combined into the resulting task. /// /// /// The cancellation token which controls cancellation of the returned task. If you do not provide a cancellation /// token, the resulting task will receive the cancellation token of the task that causes it to complete. /// /// /// A task that completes successfully when any one of the input tasks has completed successfully. If the input /// tasks are of type T, the output of this function will be a task<std::pair<T, /// size_t>>>, where the first element of the pair is the result of the completing task, and the second /// element is the index of the task that finished. If the input tasks are of type void the output is a /// task<size_t>, where the result is the index of the completing task. /// /// /**/ template auto when_any(_Iterator _Begin, _Iterator _End, cancellation_token _CancellationToken) -> decltype(details::_WhenAnyImpl::value_type::result_type, _Iterator>::_Perform(_CancellationToken._GetImplValue(), _Begin, _End)) { typedef typename std::iterator_traits<_Iterator>::value_type::result_type _ElementType; return details::_WhenAnyImpl<_ElementType, _Iterator>::_Perform(_CancellationToken._GetImplValue(), _Begin, _End); } /// /// Creates a task that will complete successfully when either of the tasks supplied as arguments completes /// successfully. /// /// /// The type of the returned task. /// /// /// The first task to combine into the resulting task. /// /// /// The second task to combine into the resulting task. /// /// /// A task that completes successfully when either of the input tasks has completed successfully. If the input tasks /// are of type T, the output of this function will be a task<std::vector<T>. If the input /// tasks are of type void the output task will also be a task<void>. To allow for a /// construct of the sort taskA || taskB && taskC, which are combined in pairs, with && taking /// precedence over ||, the operator|| produces a task<std::vector<T>> if one of the tasks is of /// type task<std::vector<T>> and the other one is of type task<T>. /// /// /// If both of the tasks are canceled or throw exceptions, the returned task will complete in the canceled state, /// and one of the exceptions, if any are encountered, will be thrown when you call get() or wait() on /// that task. /// /// /**/ template task<_ReturnType> operator||(const task<_ReturnType>& _Lhs, const task<_ReturnType>& _Rhs) { auto _PParam = new details::_RunAnyParam>(); task> _Any_tasks_completed(_PParam->_M_Completed, _PParam->_M_cancellationSource.get_token()); // Chain the return continuation task here to ensure it will get inline execution when _M_Completed.set is called, // So that _PParam can be used before it getting deleted. auto _ReturnTask = _Any_tasks_completed._Then( [=](std::pair<_ReturnType, size_t> _Ret) -> _ReturnType { _ASSERTE(_Ret.second); _JoinAllTokens_Add(_PParam->_M_cancellationSource, reinterpret_cast(_Ret.second)); return _Ret.first; }, nullptr); if (_Lhs.is_apartment_aware() || _Rhs.is_apartment_aware()) { _ReturnTask._SetAsync(); } _PParam->_M_numTasks = 2; auto _Continuation = [_PParam](task<_ReturnType> _ResultTask) { // Dev10 compiler bug auto _PParamCopy = _PParam; auto _Func = [&_ResultTask, _PParamCopy]() { _PParamCopy->_M_Completed.set( std::make_pair(_ResultTask._GetImpl()->_GetResult(), reinterpret_cast(_ResultTask._GetImpl()->_M_pTokenState))); }; _WhenAnyContinuationWrapper(_PParam, _Func, _ResultTask); }; _Lhs._Then(_Continuation, details::_CancellationTokenState::_None()); _Rhs._Then(_Continuation, details::_CancellationTokenState::_None()); return _ReturnTask; } /// /// Creates a task that will complete successfully when any of the tasks supplied as arguments completes /// successfully. /// /// /// The type of the returned task. /// /// /// The first task to combine into the resulting task. /// /// /// The second task to combine into the resulting task. /// /// /// A task that completes successfully when either of the input tasks has completed successfully. If the input tasks /// are of type T, the output of this function will be a task<std::vector<T>. If the input /// tasks are of type void the output task will also be a task<void>. To allow for a /// construct of the sort taskA || taskB && taskC, which are combined in pairs, with && taking /// precedence over ||, the operator|| produces a task<std::vector<T>> if one of the tasks is of /// type task<std::vector<T>> and the other one is of type task<T>. /// /// /// If both of the tasks are canceled or throw exceptions, the returned task will complete in the canceled state, /// and one of the exceptions, if any are encountered, will be thrown when you call get() or wait() on /// that task. /// /// /**/ template task> operator||(const task>& _Lhs, const task<_ReturnType>& _Rhs) { auto _PParam = new details::_RunAnyParam, details::_CancellationTokenState*>>(); task, details::_CancellationTokenState*>> _Any_tasks_completed( _PParam->_M_Completed, _PParam->_M_cancellationSource.get_token()); // Chain the return continuation task here to ensure it will get inline execution when _M_Completed.set is called, // So that _PParam can be used before it getting deleted. auto _ReturnTask = _Any_tasks_completed._Then( [=](std::pair, details::_CancellationTokenState*> _Ret) -> std::vector<_ReturnType> { _ASSERTE(_Ret.second); _JoinAllTokens_Add(_PParam->_M_cancellationSource, _Ret.second); return _Ret.first; }, nullptr); if (_Lhs.is_apartment_aware() || _Rhs.is_apartment_aware()) { _ReturnTask._SetAsync(); } _PParam->_M_numTasks = 2; _Lhs._Then( [_PParam](task> _ResultTask) { // Dev10 compiler bug auto _PParamCopy = _PParam; auto _Func = [&_ResultTask, _PParamCopy]() { auto _Result = _ResultTask._GetImpl()->_GetResult(); _PParamCopy->_M_Completed.set(std::make_pair(_Result, _ResultTask._GetImpl()->_M_pTokenState)); }; _WhenAnyContinuationWrapper(_PParam, _Func, _ResultTask); }, details::_CancellationTokenState::_None()); _Rhs._Then( [_PParam](task<_ReturnType> _ResultTask) { auto _PParamCopy = _PParam; auto _Func = [&_ResultTask, _PParamCopy]() { auto _Result = _ResultTask._GetImpl()->_GetResult(); std::vector<_ReturnType> _Vec; _Vec.push_back(_Result); _PParamCopy->_M_Completed.set(std::make_pair(_Vec, _ResultTask._GetImpl()->_M_pTokenState)); }; _WhenAnyContinuationWrapper(_PParam, _Func, _ResultTask); }, details::_CancellationTokenState::_None()); return _ReturnTask; } /// /// Creates a task that will complete successfully when any of the tasks supplied as arguments completes /// successfully. /// /// /// The type of the returned task. /// /// /// The first task to combine into the resulting task. /// /// /// The second task to combine into the resulting task. /// /// /// A task that completes successfully when either of the input tasks has completed successfully. If the input tasks /// are of type T, the output of this function will be a task<std::vector<T>. If the input /// tasks are of type void the output task will also be a task<void>. To allow for a /// construct of the sort taskA || taskB && taskC, which are combined in pairs, with && taking /// precedence over ||, the operator|| produces a task<std::vector<T>> if one of the tasks is of /// type task<std::vector<T>> and the other one is of type task<T>. /// /// /// If both of the tasks are canceled or throw exceptions, the returned task will complete in the canceled state, /// and one of the exceptions, if any are encountered, will be thrown when you call get() or wait() on /// that task. /// /// /**/ template auto operator||(const task<_ReturnType>& _Lhs, const task>& _Rhs) -> decltype(_Rhs || _Lhs) { return _Rhs || _Lhs; } /// /// Creates a task that will complete successfully when any of the tasks supplied as arguments completes /// successfully. /// /// /// The type of the returned task. /// /// /// The first task to combine into the resulting task. /// /// /// The second task to combine into the resulting task. /// /// /// A task that completes successfully when either of the input tasks has completed successfully. If the input tasks /// are of type T, the output of this function will be a task<std::vector<T>. If the input /// tasks are of type void the output task will also be a task<void>. To allow for a /// construct of the sort taskA || taskB && taskC, which are combined in pairs, with && taking /// precedence over ||, the operator|| produces a task<std::vector<T>> if one of the tasks is of /// type task<std::vector<T>> and the other one is of type task<T>. /// /// /// If both of the tasks are canceled or throw exceptions, the returned task will complete in the canceled state, /// and one of the exceptions, if any are encountered, will be thrown when you call get() or wait() on /// that task. /// /// /**/ template, typename _Pair = std::pair> _Ty operator||(const task& _Lhs_arg, const task& _Rhs_arg) { const _Ty& _Lhs = _Lhs_arg; const _Ty& _Rhs = _Rhs_arg; auto _PParam = new details::_RunAnyParam<_Pair>(); task> _Any_task_completed( _PParam->_M_Completed, _PParam->_M_cancellationSource.get_token()); // Chain the return continuation task here to ensure it will get inline execution when _M_Completed.set is called, // So that _PParam can be used before it getting deleted. auto _ReturnTask = _Any_task_completed._Then( [=](_Pair _Ret) { _ASSERTE(_Ret.second); details::_JoinAllTokens_Add(_PParam->_M_cancellationSource, _Ret.second); }, nullptr); if (_Lhs.is_apartment_aware() || _Rhs.is_apartment_aware()) { _ReturnTask._SetAsync(); } _PParam->_M_numTasks = 2; auto _Continuation = [_PParam](_Ty _ResultTask) mutable { // Dev10 compiler needs this. auto _PParam1 = _PParam; auto _Func = [&_ResultTask, _PParam1]() { _PParam1->_M_Completed.set(std::make_pair(details::_Unit_type(), _ResultTask._GetImpl()->_M_pTokenState)); }; _WhenAnyContinuationWrapper(_PParam, _Func, _ResultTask); }; _Lhs._Then(_Continuation, details::_CancellationTokenState::_None()); _Rhs._Then(_Continuation, details::_CancellationTokenState::_None()); return _ReturnTask; } template task<_Ty> task_from_result(_Ty _Param, const task_options& _TaskOptions = task_options()) { task_completion_event<_Ty> _Tce; _Tce.set(_Param); return create_task(_Tce, _TaskOptions); } template inline task<_Ty> task_from_result(const task_options& _TaskOptions = task_options()) { task_completion_event<_Ty> _Tce; _Tce.set(); return create_task(_Tce, _TaskOptions); } template task<_TaskType> task_from_exception(_ExType _Exception, const task_options& _TaskOptions = task_options()) { task_completion_event<_TaskType> _Tce; _Tce.set_exception(_Exception); return create_task(_Tce, _TaskOptions); } } // namespace pplx #pragma pop_macro("new") #if defined(_MSC_VER) #pragma warning(pop) #endif #pragma pack(pop) #endif // (defined(_MSC_VER) && (_MSC_VER >= 1800)) #ifndef _CONCRT_H #ifndef _LWRCASE_CNCRRNCY #define _LWRCASE_CNCRRNCY // Note to reader: we're using lower-case namespace names everywhere, but the 'Concurrency' namespace // is capitalized for historical reasons. The alias let's us pretend that style issue doesn't exist. namespace Concurrency { } namespace concurrency = Concurrency; #endif #endif #endif // PPLXTASKS_H